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Preface

These notes were used to lecture a course at TU Graz for masters level students. These course
notes were heavily based on a course given by Wojciech Samotij, which are themselves based
on the books “Random graphs” by Svante Janson, Tomasz  Luczak and Andrzej Rucinski and
“Introduction to random graphs” by Alan Frieze and Micha l Karoński, as well as a lecture course
of Michael Krivelevich. However any mistakes are my own.
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1 Preliminaries

1.1 Graph Theory

We begin with a very quick recap of various graph theoretical notions and notations that should
hopefully be familiar if you have attended an introductory graph theory course, mostly intended
as a reference for when terms are introduced later in the course.

A graph is a pair (V,E) where V is a set of vertices and E ⊆ V (2) is a set of edges. Here
and later we will write X(k) for the set of k-element subsets of a set X. For a graph G we will
write V (G) and E(G) for its vertex set and edge set respectively and define e(G) := |E(G)| and
v(G) := |V (G)|. For ease of notation we will simply write xy for an edge {x, y} ∈ E.

Given a vertex x ∈ V we will write NG(x) for the neighbourhood of x in G, that is NG(x) :=
{y ∈ V : xy ∈ E}, and the degree of x is dG(x) := |NG(x)|. Given a pair of subsets X,Y ⊆ V we
will write EG(X,Y ) for the set of edges with one endpoint in X and the other in Y and when
X = Y we will simplify this to EG(X) := EG(X,X). We will also write eG(X,Y ) := |EG(X,Y )|.
Whenever the graph G is clear from the context we may omit the subscript G in the above
notation.

Two graphs G and H are isomorphic if there exists a bijection f : V (G) → V (H) such that
xy ∈ E(G) if and only if f(x)f(y) ∈ E(H). We say H is a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G), and write H ⊆ G. A subgraph is spanning if V (H) = V (G). A subgraph is
induced if E(H) = E(G) ∩ V (H)(2). Given a subset X ⊆ V (G) we write G[X] for the induced
subgraph of G with vertex set X.

Two vertices x, y ∈ V (G) are connected if there exists a sequence of vertices

x = v1, v2, v3, . . . , vk = y

such that xixi+1 ∈ E(G) for each i ∈ [k − 1] (here and later we write [k] := {1, 2, . . . , k}). Such
a sequence is called a walk, or sometimes an x− y-walk, of length k − 1. Being connected is an
equivalence relation and the components of G are the subgraphs G[X] where X is an equivalence
class under the relation of being connected. We say G is connected if every pair of vertices are
connected or equivalently if G itself is a component.

We write En for the empty graph on n vertices and Kn for the complete graph. A set of
vertices X ⊆ V (G) is independent if G[X] is empty and a clique if G[X] is complete.

A path of length k, denoted by Pk, has vertex set {v1, . . . , vk+1} and edge set {vivi+1 : i ∈ [k]}.
A cycle of length k has vertex set {v1, . . . , vk} and edge set {vivi+1 : i ∈ [k − 1]} ∪ {vkv1}. A
graph that doesn’t contain any cycles is called a forest and a connected forest is a tree.

A graph parameter is some function whose range is the class of graphs, normally with domain
in the real numbers, which is constant on classes of isomorphic graphs. For example e(G) is a
graph parameter. Let us briefly recall some important graph parameters.

The minimum degree δ(G) and maximum degree ∆(G) of a graph are given by

δ(G) := min
v∈V

dG(v) and ∆(G) := max
v∈V

dG(v).
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The independence number α(G) is the size of the largest independent set of vertices in G and
the clique number ω(G) if the size of the largest set of vertices which is a clique in G.

We say a function χ : V (G)→ [k] is a k-colouring ofG and a colouring is proper if χ(x) 6= χ(y)
for every xy ∈ E(G). The chromatic number χ(G) is then the smallest k such that there exists
a proper k-colouring of G. Finally the girth g(G) is the length of a shortest cycle in G, if one
exists, and we let g(G) :=∞ if G is a forest.

1.2 Probability Theory

This section is intended as a short introduction to the very basics of probability theory, covering
only the basic facts about (discrete) probability spaces that we will need to use in this course.

Definition. A probability space is a triple (Ω,Σ,P), where Ω is a set, Σ ⊆ 2Ω is a σ-algebra i.e

• ∅ ∈ Σ;

• If A ∈ Σ then Ac ∈ Σ;

• For all countable families of disjoint sets (Ai : i ∈ N) in Σ,
⋃
i∈NAi ∈ Σ,

and P is a measure on Σ with P(Ω) = 1 i.e

• P is non-negative;

• P(∅) = 0;

• For all countable families of disjoint sets (Ai : i ∈ N) in Σ,

P

(⋃
i∈N

Ai

)
=
∑
i∈N

P(Ai).

The elements of Σ are called events and the elements of Ω are called elementary events. For an
event A, P(A) is called the probability of A.

The simplest example of a probability space is a discrete probability spaces, those where Ω is
countable and Σ = 2Ω. In this case the probability measure P is determined by the value it takes
on elementary events. That is, given any function p : Ω → [0, 1] that satisfies

∑
ω∈Ω p(ω) = 1,

then the function on Σ given by P(A) =
∑

ω∈A p(ω) is a probability measure. For the most part
in the course we will only have to consider discrete probability spaces, and in fact usually finite
probability spaces, ones where Ω is finite.

In a finite probability space, the most basic example of a probability measure is the uniform
distribution on Ω, where

P(A) =
|A|
|Ω|

for all A ⊆ Ω.

One elementary fact that we will use often is the following, often referred to as the union
bound:
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Lemma 1.1 (Union bound). For any countable family of events (Ai : i ∈ N) in Σ,

P

(⋃
i∈N

Ai

)
≤
∑
i∈N

P(Ai)

Proof. For each i ∈ N let us define

Bi = Ai \ (
i−1⋃
j=1

Aj).

Then Bi ⊆ Ai, and so P(Bi) ≤ P(Ai), and also
⋃
i∈NBi =

⋃
i∈NAi. Therefore, since the events

B1, B2, . . . , Bn are disjoint, by the countable additivity of P

P

(⋃
i∈N

Ai

)
= P

(⋃
i∈N

Bi

)
=
∑
i∈N

P(Bi) ≤
∑
i∈N

P(Ai)

Definition. Two events A,B ∈ Σ are independent if

P(A ∩B) = P(A)P(B).

More generally, a set of events {A1, A2, . . . , An} is mutually independent if, for any subset of
indices I ⊆ [n],

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).

It is important to note that the notion of mutual independence is stronger than simply
having pairwise independence of all the pairs Ai, Aj . Intuitively, the property of independence
of two events, A and B, should mean that knowledge about whether or not A occurs should not
influence the likelihood of B occurring. This intuition is made formal with the idea of conditional
probability.

Definition. Given two events A,B ∈ Σ such that P(B) 6= 0, we define the conditional probability
of A, given that B occurs, as

P(A|B) =
P(A ∩B)

P(B)
.

Note that, as expected, A and B are independent if and only if P(A|B) = P(A).

If we have a collection of events (Bi : i ∈ N) which partition Ω then the law of total probability
tells us that for any event A ∈ Σ

P(A) =
∑
i

P(A ∩Bi) =
∑
i

P(A|Bi)P(Bi).

Definition. A random variable on a probability space (Ω,Σ,P) is a P-measurable function
X : Ω → E to some measurable space E. That is, E is a set together with a σ-algebra ΣE on
E such that for any measurable A ∈ ΣE

{ω ∈ Ω: X(ω) ∈ A} ∈ Σ.
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For the most part we will be considering discrete random variables, that is random variables
where the range of X is countable. Note that, in particular, this will be true whenever (Ω,Σ,P)
is a discrete probability space.

Given a measurable set A ⊆ E the probability that the value X takes lies in A is P({ω ∈ Ω :
X(ω) ∈ A}) which we will write as P(X ∈ A). Normally we will want to think about random
variables not as functions from some probability space to a measurable space, but just in terms
of the distributions on the measurable space they determine.

What do we mean by a distribution? Well, for every measurable set A ∈ ΣE we can assign
it a measure PX(A) = P(X ∈ A). It is not hard to check that the triple (E,ΣE ,PX) is then
a probability space. So, in fact, this is just another word for a notion we already have, that
of a probability measure on ΣE , and indeed for every probability space (Ω,Σ,P) the function
id : Ω→ Ω is a random variable whose distribution agrees with the measure P.

During the course we will normally just introduce random variables by specifying their dis-
tributions, rather than making reference to any specific probability space. Given two random
variables X and Y with the same range we write X ∼ Y if X and Y have the same distribution,
that is, if P(X ∈ A) = P(Y ∈ A) for every A ∈ ΣE . Generally we will treat two random variables
with the same distribution as the same random variable.

Often we will have two (or more) random variables X and Y defined on the same probability
space, in which case we can specify their relationship to each other by giving their joint dis-
tribution, the function (PX ,PY ) : ΣE → [0, 1]2 which maps a set A to

(
P(X ∈ A),P(Y ∈ A)

)
.

On the other hand, given two arbitrary random variables X and Y , a useful tool for comparing
their distributions can be to find or construct a coupling, a pair of random variables (Z1, Z2)
defined on the same probability space whose marginal distributions Z1 and Z2 are distributed
as X and Y , respectively.

A particularly common case is a real random variable when E = R and ΣE is the borel
σ-algebra on R. In this case we can use the algebraic structure on R to define operations on
random variables.

Definition. The expectation of a real random variable X is

E(X) =

∫
Ω
X(ω) dP(ω).

In the case of a discrete probability space this can be expressed more clearly as

E(X) =
∑
ω∈Ω

p(ω)X(ω).

The set of real random variables forms an algebra over R with addition and multiplication
defined pointwise. For example the random variable X + Y is the function from Ω to R defined
by (X + Y )(ω) = X(ω) + Y (ω).

Lemma 1.2 (Linearity of expectation). For any two real random variables X and Y

E(X + Y ) = E(X) + E(Y ).
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Proof.

E(X + Y ) =

∫
Ω

(X + Y )(ω) dP(ω) =

∫
Ω
X(ω) + Y (ω) dP(ω)

=

∫
Ω
X(ω) dP(ω) +

∫
Ω
Y (ω) dP(ω) = E(X) + E(Y ).

So expectation is linear, however in general it is not multiplicative. Indeed E(XY ) can be
quite different to E(X)E(Y ), however if the two random variable are independent the two will
coincide.

Definition. Two random variables X,Y are independent if, for any two measurable sets A,B ⊆
R we have

P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B).

More generally, a set of random variables {X1, X2, . . . , Xn} is mutually independent if, for
any subset of indices I ⊆ [n] and any set of measurable sets {Ai ⊆ R : i ∈ I} we have

P (Xi ∈ Ai for all i ∈ I) =
∏
i∈I

P(Xi ∈ Ai).

Lemma 1.3. For any two independent random variables, X and Y ,

E(XY ) = E(X)E(Y )

Proof. To make the proof more instructive, let us consider the case where X and Y are random
variables on a discrete probability space. In the general case the proof is essentially the same,
with sums replaced by integration.

Let VX and VY be the set of values attained by X and Y respectively. Given any a ∈ VX
and b ∈ VY we have by independence that P(X = a and Y = b) = P(X = a)P(Y = b). So

E(XY ) =
∑

a∈VX ,b∈VY

ab.P(X = a and Y = b)

=
∑

a∈VX ,b∈VY

ab.P(X = a)P(Y = b)

=

∑
a∈VX

a.P(X = a)

∑
b∈VY

b.P(Y = b)

 = E(X)E(Y ).

Let’s briefly discuss some important random variables and their properties. Perhaps the
simplest random variable is a Bernoulli random variable Ber(p) which takes the value 1 with
probability p and 0 with probability 1 − p. The expectation of Ber(p) is clearly p. A binomial
random variable Bin(n, p) is the sum of n mutually independent Ber(p) random variables. One
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normally thinks of this as measuring the number of success in n independent ‘trials’ with success
probability p. For for any integer 0 ≤ k ≤ n we can calculate that

P(Bin(n, p) = k) =

(
n

k

)
pk(1− p)n−k.

By the linearity of expectation its expectation is np, and in fact it can be shown that np is also
the mode and median.

The Poisson distribution Po(λ) has a distribution given by

P(Po(λ) = k) =
λke−λ

k!
for all integers k ≥ 0.

One can think of the Poisson distribution as counting the number of occurences in a fixed time
interval of some given event, if these events occur with a known constant rate and independently
of the time since the last event. It can be shown that the expectation of Po(λ) = λ.

1.3 Useful Estimates

Many proofs using the probabilistic method will reduce to calculating certain probabilities, for
example showing they are less than 1 or tend to 0. For this purpose we will often need to
estimate some quite complicated combinatorial expressions. In this section we will note down
some useful estimates to apply later, both weak and strong.

Firstly the factorial function n!. We can bound this above weakly as n! ≤ nn. A more careful
estimate of (n

e

)n
≤ n! ≤ en

(n
e

)n
can be proved by induction. Finally Stirlings formula, n! ∼

√
2πn

(
n
e

)n
, gives a more precise

asymptotic formula.

For the binomial co-efficient
(
n
k

)
we have a weak upper bound of

(
n
k

)
≤ nk (or if we’re being

even more imprecise
(
n
k

)
≤ 2n). A more careful estimation gives(n

k

)k
≤
(
n

k

)
≤
(en
k

)k
.

Sometimes it will be necessary to bound more precisely the middle binomial co-efficient and for
this purpose we have

22m

2
√
m
≤
(

2m

m

)
≤ 22m

√
2m

Finally for bounding expressions of the type (1 − p)m with p > 0 small we use the inequality
1 + x ≤ ex, valid for all real x, which give us

(1− p)m ≤ e−mp.

For bounding such expressions from below, which is usually more delicate, we often use

1− p ≥ e−
p

1−p .

Noting in particular that the latter is ≥ e−2p if 0 ≤ p ≤ 1
2 and also ≥ e−p+O(p2) if p→ 0.
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We will also use throughout the notes the following notation for comparing growth rates of
functions, which it will be useful to be familiar with. Given two functions f, g : N → R we say
that:

• f = O(g) if there exists C > 0 such that for all sufficiently large n, f(n) ≤ Cg(n);

• f = Ω(g) if there exists C > 0 such that for all sufficiently large n, f(n) ≥ Cg(n);

• f = o(g) if for sufficiently large n, f(n) ≤ Cg(n), for any fixed C > 0;

• f = ω(g) if for sufficiently large n, f(n) ≥ Cg(n), for any fixed C > 0;

• f = Θ(g) if f = O(g) and f = Ω(g);

• f ≈ g if f = (1 + o(1))g.
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1.4 The Probabilistic Method

In its most basic form the probabilistic method can be described as follows: In order to prove
the existence of a combinatorial object satisfying certain conditions we pick a random object
from a suitable probability space and calculate the probability that it satisfies these conditions.
If we can prove that this probability is strictly positive, then we conclude that such an object
must exist, since if none of the objects satisfied the conditions, the probability of a random
object doing so would be zero.

The probabilistic method is useful in cases when an explicit construction of such an object
does not seem feasible, and when we’re more interested in the existence of such an object than
in a specific example.

So, for example, in order to show that there exists a graph satisfying a property P, one
strategy would be to find a graph-valued random variable G such that we can show that
P(G satisfies P) > 0. Initially these random variables G were considered as tools to prove
the existence of certain graphs, but eventually it became clear, perhaps because these tools were
so useful, that for certain natural distributions these ‘random graphs’ were interesting objects
to study in their own right.

For example one of the simplest graph valued random variables would be to take GU to be
uniformly distributed over all graphs with vertex set [n]. Then, or any property P we have that

P(GU satisfies P) =
|{H : V (H) = [n], H satisfies P}|

2(n2)

and so calculating P(GU satisfies P) is equivalent to counting the number of graphs which satisfy
P. So, it seems that if anything I’ve made my job harder. Before I needed to find or construct
a graph with property P, but now I need to be even cleverer and count graphs with certain
properties.

However, there is another way of thinking about GU . Suppose we take a family of
(
n
2

)
many

mutually independent Ber(1/2) random variables,
(
Be : e ∈ [n](2)

)
and let us define a random

variable G = (V,E) where V = [n] and E =
{
e ∈ [n](2) : Be = 1

}
. Clearly G is graph-valued,

and perhaps surprisingly, as we will show later, G ∼ GU .

In this way switching to this probabilistic viewpoint, rather than an enumerative viewpoint,
can be beneficial, since the product structure of this probability space allows you to argue at a
local, rather than global level. Furthermore, once we start working with probability we can apply
a whole host of tools from probability theory, many of which don’t have obvious combinatorial
counterparts.

Let us demonstrate this with an example. There is a famous theorem of Ramsey which
asserts some relation between the independence and clique number of a graph, namely that for
large enough graphs, these parameters cannot be simultaneously small.

Theorem 1.4 (Ramsey’s Theorem). For every integer k ≥ 3 there is some integer n = n(k)
such that if v(G) ≥ n, then max{α(G), ω(G)} ≥ k.

Since such an integer n(k) exists, there is some smallest such integer

R(k) = min{n : max{α(G), ω(G)} ≥ k for every n-vertex graph G}.
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Determining the value of R(k) exactly seems to be a hopelessly difficult task, for example the
value of R(5) is not even known. Finding good bounds for the asymptotic behaviour of R(k) is
an important problem in graph theory. In terms of upper bounds Erdős and Szekeres showed
that R(k) ≤ 4k, and it was a major open problem, which was only recently solved, as to whether

this can be impoved to (4 − ε)k for some ε > 0, and the exact value of limk→∞
logR(k)

k is still
unknown. Whilst is not too hard to construct a graph giving a polynomial lower bound for
R(k), there is still no constructive exponential lower bound. However, as an early use of the
probabilistic method Erdős gave an exponential lower bound.

Theorem 1.5 (Erdős). For every integer k ≥ 3 we have R(k) ≥ 2
k
2
−1.

Proof. Let n = 2
k
2
−1 and let G be the random variable we defined earlier in the section. We will

consider the property P that α(G) < k and ω(G) < k. If we can show that P(G satisfies P) > 0,
then we can conclude that there must be at least one graph H on n vertices such that α(H) < k
and ω(H) < k, and hence R(k) > n.

So, let us estimate the probability that G satisfies P. For any set X ∈ [n](k) let AX be the
event that G[X] is empty and let BX be the event that G[X] is complete. We note that G does
not satisfy P if and only if some event AX or BX occurs.

Now, for any fixed X we have that

P(AX) =

(
1

2

)(k2)

since each edge e ∈ X(2) is in G independently with probability 1/2. Similarly

P(BX) =

(
1

2

)(k2)
.

Hence by the union bound

P(G doesn’t satisfy P) = P

 ⋃
X∈[n](k)

(AX ∪BX)

 ≤ 2
∑

X∈[n](k)

(
1

2

)(k2)
= 2

(
n

k

)
2−(k2).

It follows that

P(G satisfies P) = 1− P(G doesn’t satisfy P) ≥ 1− 2

(
n

k

)
2−(k2).

So, it remains to find the largest n such that 2
(
n
k

)
2−(k2) < 1. Let us show that this is satisfied

with n = 2
k
2
−1.

Using the weak estimate
(
n
k

)
≤ nk we see that

2

(
n

k

)
2−(k2) ≤ 2nk2−

k(k−1)
2 = 21+k( k2−1)− k(k−1)

2 = 21− k
2 < 1.

12



2 Random Graph Models

Broadly, by a random graph, we will mean some random variable G which is graph-valued. In
particular, if write Gn for the set of graphs whose vertex set is [n], for the most part we will
consider random variables taking values in Gn for some n. Note that, since we can associate
each graph H ∈ Gn with the subset E(H) ⊆ [n](2) we have that

|Gn| = 2(n2).

The simplest model of a random graph we could take would then be a uniform random graph,
that is G is a random variable which takes the value H with probability 1

2(
n
2)

for each H ∈ Gn.

There is another useful way to view this random variable, we start with an empty graph
with vertex set [n] and for each edge e ∈ [n](2) we add it to the graph with probability 1/2,
independently of all other edges. Let X be the random variable defined as above. For any
particular graph H ∈ Gn it is easy to calculate

P(X = H) =
∏

e∈E(H)

P(e ∈ E(X)) ·
∏

e/∈E(H)

P(e /∈ E(X)) =
1

2(n2)
.

Hence X has the same distribution as G above.

More generally, given some p ∈ [0, 1] we can consider the binomial random graph G(n, p),
which is the random graph obtained by adding each edge to the empty n-vertex graph with
probability p, independently of each other edge (and so each edge is not added with probability
1− p). As above, it is easy to calculate the distribution of this random variable: For any graph
H ∈ Gn

P(G(n, p) = H) =
∏

e∈E(H)

P(e ∈ E(G(n, p))) ·
∏

e/∈E(H)

P(e /∈ E(G(n, p))) = pe(H)(1− p)(
n
2)−e(H).

When p > 1/2 this weights our choice of random graph towards graphs with more edges, and
when p < 1/2 this weights our choice of random graph towards those with fewer edges.

We will also consider the random graph G(n,m), which is a uniformly chosen graph on [n]
with exactly m edges. That is, it is the uniform random variable taking values in Gn,m = {G ∈
Gn : e(G) = m}. There is of course potential for confusion in this notation, however since m ∈ N
and p ∈ (0, 1), it should be clear from the context which model we are referring to.

Often we are not interested in fixed p or m, but rather allowing p and m to vary as a function
of n, the size of the vertex set. More precisely, often we are interested in a property P of graphs,
for example being connectedness, or two colourability, which can be thought of as subsets of
Pn ⊆ Gn (those graphs having this property). In this case, given a function p(n) or m(n), we are
interested in the asymptotic behaviour of P(G(n, p) ∈ Pn) or P(G(n,m) ∈ Pn). In particular,
does this sequence have a limit as n→∞ and what is this limit. One special case is when this
limit exists and is equal one, in which case we say that G(n, p)/G(n,m) satisfies P almost surely
or with high probability (whp).

A natural question to ask is how are these models of random graphs related to each other,
both between the two different models, but also within each model as we vary p and m. Let us
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consider the latter question first, since it introduces both an interesting new model, and a new
technique.

The model is that of a random graph process, these were first considered by Erdős and Renyi.
The idea is to start with an empty graph with vertex set [n] and then add new edges to it
randomly, one by one, until we get to the complete graph.

More formally, let’s consider a random variable σ which is uniformly distributed on the set
of permutations of [n](2), i.e., we may think of σ as a uniformly chosen random ordering of the
edges of Kn. For each m ∈

{
0, 1, . . . ,

(
n
2

)}
let

Gm =
(
[n], {σ(i) : i ≤ m}

)
,

that is, the graph whose edge set is the first m edges in the order σ. This defines a sequence of

random variables
(
G1, . . . , G(n2)

)
, and in fact it’s not hard to show that Gm ∼ G(n,m).

This is useful, as it allows us to compare G(n,m) and G(n,m′) for different m 6= m′. The
fancy name for this idea is called coupling, and it will be useful later. Given two random
variables X and Y , perhaps just in terms of their distributions, we might want to compare
various probabilities (for example P(X ≥ a) with P(Y ≤ b)). A useful tool to do so is to
find a third random variable Z = (X ′, Y ′) such that X ′ ∼ X and Y ′ ∼ Y , and we call Z a
coupling of X and Y . The useful thing here is that X ′ and Y ′, unlike perhaps X and Y , have
a joint distribution. One obvious example of a coupling is just to take the independent coupling
Z = (X ′, Y ′) where X ′ and Y ′ are independently distributed as X and Y respectively. However,
by finding a better coupling we can sometimes infer things about the relationship between X
and Y .

For example, if we have X = G(n,m) and Y = G(n,m′), say with m < m′, then we see that
Z = (Gm, Gm′) is a coupling for X and Y . Consider then some property of graphs P which is
preserved under taking supergraphs, which we call an increasing property. Since Gm ⊆ Gm′ , it
follows that whenever Gm satisfies P then so does Gm′ . Hence

P(G(n,m) satisfies P) = P(Gm satisfies P) ≤ P(Gm′ satisfies P) = P(G(n,m′) satisfies P).

Similarly there is a natural random graph process for the binomial model. Suppose we
have a family of mutually independent random variables

(
Ue : e ∈

(
n
2

))
which are all uniformly

distributed on [0, 1]. For each p ∈ [0, 1] let

Gp =

(
[n],

{
e ∈

(
n

2

)
: Ue ≤ p

})
,

Again, this defines a family of random variables (Gp : p ∈ [0, 1]), and again it’s not hard to show
that Gp ∼ G(n, p). As this before this gives us a natural simultaneous coupling of all G(n, p),
which can be used to show that

P(G(n, p) satisfies P) ≤ P(G(n, p′) satisfies P).

whenever p ≤ p′ and P is an increasing property, and analogous statements hold, in the obvious
way, for decreasing properties.

In this way, we can think of the structure of the random graphs G(n, p) and G(n,m) as
evolving as the parameters p and m increase, starting with an empty graph and gradually
growing to a complete graph. This is an idea we will come back to in the next chapter.
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What can we say about how G(n, p) is related to G(n,m)? In fact, as it will turn out, when
the parameters p and m are chosen appropriately, the two models are closely enough related
that for most applications you can work in whichever model is most convenient, and use some
standard results to transfer results between them.

Indeed, one simple thing to note is that, if we condition on having exactly m edges, then
G(n, p) is equally likely to be any of the graphs in G(n,m) and hence(

G(n, p)|e(G(n, p)) = m
)
∼ G(n,m).

(Briefly, given a random variable X on a probability space (Ω,Σ,P) and an event B in Σ
then P(·|B) defines a new probability measure on Σ and the function (X|B) : Ω → E on the
probability space (Ω,Σ,P(·|B)) given by (X|B)(ω) = X(w) is the random variable X conditioned
on B.)

More generally, we should expect that G(n, p) and G(n,m) should behave similarly when we
expectG(n, p) to have approximatelymmany edges. More precisely, we know that E(e(G(n, p))) =
p
(
n
2

)
and hence we should expect the two models to behave similarly when p ≈ m

(n2)
.

We don’t quite have the tools yet to show the full extent of this behaviour, but for now we
will be able to show a particular case - if the probability that G(n, p) satisfies some property P
is small, then so is the property that G(n,m) satisfies this property.

Theorem 2.1. Let P be a graph property, m(n) → ∞,
(
n
2

)
−m → ∞ and p = m

(n2)
. Then for

sufficiently large n
P(G(n,m) ∈ P) ≤ 3

√
m · P(G(n, p) ∈ P)

Proof. By conditioning on the number of edges in G(n, p) and using the law of total probability,
we see that

P(G(n, p) ∈ P) =

(n2)∑
k=0

P(e(G(n, p)) = k)P(G(n, p) ∈ P|e(G(n, p)) = k)

=

(n2)∑
k=0

P(e(G(n, p)) = k)P(G(n, k) ∈ P)

≥ P(e(G(n, p)) = m)P(G(n,m) ∈ P)

Since the number of edges in a random graph G(n, p) is distributed as a binomial distribution
with

(
n
2

)
many trials and success probability p we can directly calculate

P(e(G(n, p)) = m) =

((n
2

)
m

)
pm(1− p)(

n
2)−m.

This is the probability that a binomial random variable takes it’s mean value. It can be
shown that this is in fact also the mode of the binomial random variable, the most likely value,
and so immediately we can say that it is at least 1

(n2)
≈ 2

n2 . However, we can be a bit more precise

and estimate how this expression behaves asymptotically using our estimates from Section 1.3.
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Let use write N =
(
n
2

)
, so that p = m

N , and recall that by Stirling’s formula k! = (1 +

o(1))
√

2πk
(
k
e

)k
and hence(

N

m

)
=

N !

m!(N −m)!

= (1 + o(1))

√
2πNNNemeN−m√

2πm
√

2π(N −m)mm(N −m)N−meN

= (1 + o(1))

√
N

2πm(N −m)

NN

mm(N −m)N−m
.

Since p = m
N , we can also evaluate

pm(1− p)N−m = pm(1− p)N−m =
mm

Nm

(
1− m

N

)N−m
=
mm

Nm

(
N −m
N

)N−m
=
mm(N −m)N−m

NN

Hence, it follows that

P(e(G(n, p)) = m) =

(
N

m

)
pm(1−p)N−m =

(
1+o(1)

)√ N

2πm(N −m)
≥
(
1+o(1)

) 1√
2πm

≥ 1

3
√
m
.

Hence

P(G(n,m) ∈ P) ≤ P(G(n, p) ∈ P)

P(e(G(n, p)) = m)
≤ 3
√
m · P(G(n, p) ∈ P).

In fact, when the graph properties we consider are reasonably well behaved, we can do much
better than Theorem 2.1. Recall that an increasing property of graphs is a property which is
closed under taking supergraphs. Similarly we can define a decreasing property of graphs as
one which is closed under taking subgraphs. A graph property which is either increasing or
decreasing is called monotone.

Theorem 2.2. Let P be a montone graph property and let m,n be integers. If we let p = m

(n2)
,

then
P(G(n,m) ∈ P) ≤ 2P(G(n, p) ∈ P).

Proof. Let us suppose that P is increasing, the case that P is decreasing is similar. Then as
before,

P(G(n, p) ∈ P) =

(n2)∑
k=0

P(e(G(n, p)) = k)P(G(n, k) ∈ P)

≥
(n2)∑
k=m

P(e(G(n, p)) = k)P(G(n, k) ∈ P)

However, by the coupling we demonstrated earlier we know that for every k ≥ m,

P(G(n, k) ∈ P) ≥ P(G(n,m) ∈ P)
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and hence

P(G(n, p) ∈ P) ≥ P(G(n,m) ∈ P)

(n2)∑
k=m

P(e(G(n, p)) = k)

= P(G(n,m) ∈ P)P(e(G(n, p)) ≥ m).

However, e(G(n, p)) is distributed as a binomial distribution with
(
n
2

)
trials and success prob-

ability p, and it can be shown that the median of the binomial distribution is also equal to its
expectation, and hence P(e(G(n, p)) ≥ m) ≥ 1

2 , and the result follows.

The above proofs are then useful if we know that P(G(n, p) ∈ P) → 0, since then we can
conclude that P(G(n,m) ∈ P)→ 0 (although in the case of Theorem 2.1 we would need to know
that P(G(n, p) ∈ P)→ 0 sufficiently quickly).

However, in general we can’t hope to have a bound in the other direction, that is to bound
P(G(n, p) ∈ P) from above in terms of P(G(n,m) ∈ P) since there are graph properties that
are very sensitive to the number of edges. For example, if we let P be the event that G doesn’t
have exactly m edges then clearly P(G(n,m) ∈ P) = 0, however for any p 6= 0, 1 the probability
that G(n, p) doesn’t have exactly m edges is bounded away from zero.

A little bit later in the course, when we have some more probabilistic tools available to us,
we will be able to show that, in most cases, when p ≈ m

(n2)
, if limm→∞ P(G(n,m) ∈ P) exists,

then limp→∞ P(G(n, p) ∈ P) will also exist, and they will coincide. Furthermore, when P is
monotone, the converse will also hold.

Such results allow us to easily transfer results between the two models, and allows us to
choose to work in whichever model suits us better. As we will see, in many cases it will be
significantly easier to work in one model rather than the other.
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3 Thresholds

3.1 Thresholds

Through the standard coupling described in the previous section, we can view the structure
of the random graph G(n, p) as evolving as p increases from 0 to 1. Given a property P it is
interesting to consider how the probability Φ(p) := P(G(n, p) ∈ P) evolves we vary p.

Suppose for example we’re interested in the probability Φ(p) that a random graph G(n, p)
is connected. Clearly G(n, 0) is connected with probability 0 and G(n, 1) is connected with
probability 1. For p ∈ (0, 1), we know that Φ(p) is non-zero, but how does it behave? Well, in
this case, for fixed n, we can see that Φ(p) is a continuous function of p, indeed it is in fact a
polynomial in p that we can write down ‘explicitly’

P(G(n, p) is connected) =
∑

H∈Gn : H connected

pe(H)(1− p)(
n
2)−e(H).

Furthermore, whilst this is very much not clear from the expression above, we know that Φ(p)
is increasing. Indeed, as we showed in the previous section, for any increasing property P the
function Φ(p) is an increasing function of p, which for non-trivial p will satisfies Φ(0) = 0 and
Φ(1) = 1.

So, we know that as we increas p from 0 to 1, Φ(p) also increases continuously from 0 to 1.
We might expect this transition happens somehow ‘smoothly’, but a rather surprising thing we
will discover is that, in the limit as n → ∞, this transition from being disconnected to being
connected is in fact incredibly abrupt, and that this isn’t just true of connectedness, but of all
monotone properties.

To make this precise let us introduce the concept of a threshold.

Definition. Let P be an increasing property.

1. A sequence p(n) is a threshold for P if

lim
n→∞

P(G(n, p′) ∈ P) =

{
0 if p′ = o(p),

1 if p′ = ω(p).
(3.1)

2. A sequence m(n) is a threshold for P if

lim
n→∞

P(G(n,m′) ∈ P) =

{
0 if m′ = o(m),

1 if m′ = ω(m).
(3.2)

Thresholds for decreasing properties are defined as thresholds for their complements. Note
that threshold are not unique. For example if p(n) = 1

n is a threshold for P then so is p(n) = 10
n

for example.

Note that by Theorem 2.2 it follows that if p is a threshold for P in the binomial model then
m =

(
n
2

)
p is a threshold in the other model.
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We will show that every monotone property has a threshold, but to do so we will first need
to introduce another useful probabilistic tool, which is sometimes known as sprinkling, or multi-
round exposure.

The idea is to generate G(n, p) in two independent steps as follows. Suppose we take some
p1 < p and let p2 be such that p1 + p2 − p1p2 = p (which re-arranges to p2 = p−p1

1−p1
). Let

G1 ∼ G(n, p1) and G2 ∼ G(n, p2) be independent random variables and define a random variable
G = G1 ∪G2. We claim that G ∼ G(n, p).

Indeed, it is clear that the probability that any edge appears in G is independent of the
probability that any other edge appears (since this is true individually in G1 and G2, and G1

and G2 are independent), and it’s easy to calculate

P(e ∈ E(G)) = P(e ∈ E(G1) or e ∈ E(G2))

= P(e ∈ E(G1)) + P(e 6∈ E(G1) and e ∈ E(G2))

= p1 + (1− p1)p2

= p1 + p2 − p1p2 = p.

Hence G ∼ G(n, p).

Theorem 3.1 (Bollobás and Thomason). Every non-trivial monotone graph property has a
threshold.

Proof. Let P be a non-trivial monotone graph property, where without loss of generality we may
assume that P is increasing.

Given ε ∈ (0, 1) let p(ε) be such that P(G(n, p(ε)) ∈ P) = ε. Note that, since P(G(n, p) ∈ P)
is a continuous function of p such a p(ε) exists, and in fact since the function is strictly increasing
it is in fact unique. We will show that p̂ = p(1/2) is a threshold for P.

Let k be an integer and let G1, G2, . . . , Gk be k independent copies of G(n, q), where we will
choose q ∈ (0, 1) later.

We consider G1, G2, . . . , Gk as a multi-round exposure of G(n, q′), which is to say that, by
similar arguments as before

G1 ∪G2 ∪ . . . ∪Gk ∼ G(n, q′)

where q′ = 1− (1− q)k ≤ kq (This is an application of Bernoulli’s inequality, or is easy to show
inductively). Hence, since P is increasing

P(G(n, kq) 6∈ P) ≤ P(G(n, q′) 6∈ P) = P(G1 ∪G2 ∪ . . . ∪Gk 6∈ P).

Furthermore, again since P is increasing, if Gi ∈ P for any i then G1 ∪ G2 ∪ . . . ∪ Gk ∈ P.
Hence

P(G(n, kq) 6∈ P) ≤ P(G1 ∪G2 ∪ . . . ∪Gk 6∈ P)

≤ P(Gi 6∈ P for all i)

= P(G1 6∈ P)k
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Hence, if p ≥ kp̂, then taking q = p̂, we see that

P(G(n, p) 6∈ P) ≤ P(G(n, kp̂) 6∈ P) ≤ P(G(n, p̂) 6∈ P)k = 2−k.

It follows that if p = ω(p̂) then P(G(n, p) ∈ P)→ 1.

Conversely, if p ≤ 1
k p̂, then taking q = p we see that

1/2 = P(G(n, p̂) 6∈ P) ≤ P(G(n, p) 6∈ P)k,

or in other words, P(G(n, p)) 6∈ P) ≥ 2−
1
k = 1 − ok(1). Again, it follows that if p = o(p̂) then

P(G(n, p) ∈ P)→ 0.

3.2 Coarse and Sharp Thresholds

To recall, p is a threshold for P if whenever p′ = ω(p) we have that with high probability G(n, p′)
has property P and conversely whenever p′ = o(p) we have that with high probability G(n, p′)
has property P. This transition from almost surely not having P to almost surely having P
happens in a range of probability of size Θ(p), however for some properties P (and the correct
threshold p) this transition could happen over a much narrower range.

Definition. Let P be an increasing property.

1. A sequence p(n) is a sharp threshold for P if for every γ > 0

lim
n→∞

P(G(n, p′) ∈ P) =

{
0 if p′ ≤ (1− γ)p,

1 if p′ ≥ (1 + γ)p.
(3.3)

2. A sequence m(n) is a sharp threshold for P if for every γ > 0

lim
n→∞

P(G(n,m′) ∈ P) =

{
0 if m′ ≤ (1− γ)m, ,

1 if m′ ≥ (1 + γ)m.
(3.4)

As before, sharp thresholds are not unique functions, but only determined up to a (1 +o(1))-
multiplicative factor. Note that, perhaps confusingly, if p is a sharp threshold for P then 10p is
still a threshold for P, despite not being a sharp threshold. If p is a threshold for a property P,
but not a sharp threshold, then p is called a coarse threshold.

3.3 Hitting Times

Finally let us introduce another way of thinking about thresholds, in terms of the random graph
process G(m). Given a non-trivial monotone property P let us define m̃ = m̃(P) as

m̃ = min{m : G(m) ∈ P}.
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We call m̃ the hitting time of P. Note that

P(m̃ ≤ m) = P(G(m) ∈ P) = P(G(n,m) ∈ P)

and so the location and width of a threshold for P have equivalent formulations in terms of the
concentration of m̃. For example, m̂ is a threshold for P if and only if P(m̃ = Θ(m̂))→ 1.

The study of hitting times can give us a better insight into some to threshold phenomena
that we see. For example, we shall see that the property that δ(G) ≥ 1 and the property that
G is connected have the same threshold function, but in fact one can even show that with high
probability the hitting times for the two properties are the same. That is, in almost all random
graph processes, G(m) becomes connected as soon as the last isolated vertex dissapears.
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4 Small Subgraphs

4.1 The First and Second Moment Methods

So, given a monotone property P, how might we actually go about finding a threshold for P?
Let’s take as an example the property P that G(n, p) contains a triangle. A sensible random
variable to consider is T = T (n, p) = Number of triangles in G(n, p). Then, to show that a
function p̂ is a threshold for P, we need to prove two things:

1. P(T > 0)→ 1 if p = ω(p̂);

2. P(T = 0)→ 1 if p = o(p̂).

Now, T is a particular well behaved random variable, since it can be written as the sum of
indicator random variables: Given an event A the indicator random variable 1A takes the value
1 if A occurs and 0 otherwise. Equivalenty, 1A ∼ Ber(P(A)). If, for any U ∈ [n](3) we let AU be
the event that G(n, p)[U ] is a triangle, then clearly

T =
∑

U∈[n](3)

1AU .

It is easy to see that the expectation of an indicator random variable E(1A) = P(A) and hence,
by the linearity of expectation if we have a random variable Y which can be written as a sum
of indicator random variables Y =

∑
A∈A 1A then E(Y ) =

∑
A∈A P(A). It follows that

E(T ) =
∑

U∈[n](3)

P(AU ).

However P(AU ) is easy to calculate, there are 3 edges in U and each edge appears independently
with probability p, and hence P(AU ) = p3 (independently of U). Thus

E(T ) =

(
n

3

)
p3 = (1 + o(1))

1

6
n3p3.

Hence we can see that if p = o(n−1) then E(T )→ 0 and if p = ω(n−1) then E(T )→∞. So, we
should expect p = n−1 to be a threshold for P.

Now all we need is a way to go from the statements we have about the expectation of T
to statements about the probability that T takes certain values. Two elementary, but useful,
results that allow us to do this are Markov and Chebyshev’s inequality.

Firstly, Markov’s inequality tells us that it’s unlikely that a non-negative random variable
exceeds it’s expectation significantly.

Lemma 4.1. [Markov’s Inequality] Let X be a non-negative random variable and a > 0, then

P(X ≥ a) ≤ E(X)

a
.
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Proof. Consider the indicator random variable of the event that X ≥ a, let us denote it by I.
Since I = 0 if X < a and X is non-negative we have that aI ≤ X. Therefore

aP(X ≥ a) = aE(I) ≤ E(X).

So, Markov’s inequality says that if a non-negative random variable has a small expectation
then it’s very likely that the random variable is small. What about if the expectation of X is
large, can we say that it’s very likely that X is large? Clearly in general this is not true: we can
take a random variable that is almost always 0, except it takes the value N2 with probability
1/N for some large N . The expectation of such a random variable can be arbitrarily large, and
yet it’s very likely that X is small.

With this in mind, we introduce the concept of variance which can be thought of as a measure
of how close to its expectation we expect a random variable to be.

Definition. The variance of a random variable X is

Var(X) := E
(

(X − E(X))2 ) = E(X2)−
(
E(X)

)2
,

where the first equality is the definition, and the second follows from linearity of expectation.

So, Var(X) is the expected value of the square of the difference between X and its average.
One practical reason for taking the square here is that we are interested only in the the magnitude
of the difference between X and its average, not the sign, but working with absolute values is
much more difficult.

Unlike E(X), the variance is not a linear operator. If we want to calculate the variance of
a sum of random variables we need to know something about their pairwise dependence. As
a example suppose we have two random variables X and Y , we can calculate the variance of
X + Y in terms of X and Y directly from the definition using the linearity of expectation.

Var(X + Y ) = E
(
(X + Y )2

)
−
(
E(X + Y )

)2
= E(X2 + 2XY + Y 2)−

(
E(X) + E(Y )

)2
= E(X2) + 2E(XY ) + E(Y 2)−

(
E(X)

)2 − 2E(X)E(Y )−
(
E(Y )

)2
= Var(X) + Var(Y ) + 2(E(XY )− E(X)E(Y ))

This motivates the following definition.

Definition. The covariance of two random variables X and Y is

Cov(X,Y ) = E
((
X − E(X)

)(
Y − E(Y )

))
= E(XY )− E(X)E(Y ).

Lemma 4.2. Given a sequence of random variables X1, X2, . . . , Xn, let X =
∑

iXi. Then

Var(X) =
n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj).
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Proof.

Var(X) = E(X2)−
(
E(X)

)2
= E

(∑
i

Xi

)2
−(E(∑

i

Xi

))2

=
∑
i

E
(
X2
i

)
+
∑
i 6=j

E(XiXj)−
∑
i

(E(Xi))
2 −

∑
i 6=j

E(Xi)E(Xj)

=
∑
i

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj).

Note that if X and Y are independent then Cov(X,Y ) = 0, but be careful to remember that
the opposite is not true. If the variance of the random variable is small we will expect it to be
quite likely that the random variable takes values near it’s mean, since the expected deviation
is low. The following inequality of Chebyshev formalises this idea.

Lemma 4.3 (Chebyshev’s Inequality). Let X be a random variable with Var(X) < ∞. Then
for any t > 0

P(|X − E(X)| ≥ t) ≤ Var(X)

t2
.

Proof. We apply Markov’s inequality to the non-negative random variable (X − E(X))2. Since
E((X − E(X))2) = Var(X) we have that

P(|X − E(X)| ≥ t) = P((X − E(X))2 ≥ t2) ≤ Var(X)

t2
.

It is not too hard to produce simple random variables where Lemma 4.3 is best possible.

It follows from Chebyshev’s inequality that if we have a sequence of random variables with
E(Xn)→∞ and Var(Xn) = o(E(Xn)2) then

P
(
Xn ≥

E(Xn)

2

)
≥ 1− P

(
|Xn − E(Xn)| ≥ E(Xn)

2

)
≥ 1− Var(Xn)(

E(Xn)
2

)2 = 1− o(1),

and so with high probability Xn = Ω(E(Xn)).

We’d like to apply this now to our problem about the threshold for the appearance of a
triangle, but in order to do so we need to be able to calculate the variance of the random
variable T counting the number of triangles. Luckily, it is relatively simple to calculate the
variance of a sum of indicator random variables. Indeed suppose that Y =

∑
A∈A 1A. By

Lemma 4.2 we have that

Var(Y ) =
∑
A∈A

Var(1A) +
∑

A 6=B∈A
Cov(1A,1B).

Note that for any A ∈ A

Var(1A) = E((1A)2)− (E(1A))2 = P(A)− P(A)2 = P(A)(1− P(A)).
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and for any A 6= B ∈ A

Cov(1A,1B) = E(1A1B)− E(1A)E(1B) = P(A ∩B)− P(A)P(B) = P(A)(P(B|A)− P(B)).

Hence we can express the variance of Y as follows:

Var(Y ) =
∑
A∈A

P(A)(1−P(A))+
∑

A 6=B∈A
P(A)(P(B|A)−P(B)) =

∑
A∈A

P(A)

(∑
B∈A

P(B|A)− P(B)

)
.

This reduces a lot of variance calculations to a combinatorial problem.

For example, if we let T as before be the number of triangles in G(n, p) then we have that
T =

∑
U∈[n](3) P(AU ) and hence,

Var(T ) =
∑

U∈[n](3)

P(AU )

 ∑
W∈[n](3)

P(AW |AU )− P(AW )

 .

In order to calculate the inner term we split into cases depending on |U ∩W |. In the first case,
when |U ∩W | ≤ 1, the events AU and AW are independent, and so P(AW |AU ) = P(AW ). So,
there is no contribution to the sum from these pairs.

In the second case, when |U ∩W | = 2, the two triangles share an edge, and so P(AW |AU )−
P(AW ) = p2 − p3. For a fixed U , there are 3(n− 3) such W .

Finally, when |U ∩W | = 3, i.e. U = W , we have that P(AW |AU )− P(AW ) = 1− p3, and for
a fixed U there is one such W . Hence

Var(T ) =
∑

U∈[n](3)

P(AU )

 ∑
W∈[n](3)

P(AW |AU )− P(AW )


=

∑
U∈[n](3)

P(AU )
(
3(n− 3)(p2 − p3) + (1− p3)

)
=

(
n

3

)
p3
(
3(n− 3)(p2 − p3) + (1− p3)

)
. (4.1)

Theorem 4.4. p̂ = n−1 is a threshold function for the existence of a triangle in G(n, p).

Proof. Let T be the number of triangles in G(n, p). Suppose first that p = o(n−1). Then, since
E(T ) =

(
n
3

)
p3 = Θ(n3p3) = o(1), Markov’s inequality implies that

P(T ≥ 1) ≤ E(T ) = o(1).

Hence, with high probability T = 0, that is, G(n, p) contains no triangles.

Suppose then that p = ω(n−1). By (4.1)

Var(T ) =

(
n

3

)
p3
(
3(n− 3)(p2 − p3) + (1− p3)

)
= O

(
n3p3

(
np2 + 1

))
.

Hence
Var(T )

E(T )2
= O

(
np2 + 1

n3p3

)
= O

(
1

n2p2
+

1

n3p3

)
= o(1).
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Therefore, by Chebyshev’s inequality

P(T = 0) ≤ P (|T − E(T )| ≥ E(T )) ≤ Var(T )

E(T )2
= o(1).

Hence, with high probability T > 0, that is, G(n, p) contains a triangle.

Note that, Theorem 2.2 allows us to deduce that m̂ = n−1
(
n
2

)
= n−1

2 is a threshold for the
existence of a triangle in G(n,m). Indeed, if m = o(m̂) then m

(n2)
= o(n−1) and we can conclude

that

P(G(n,m) doesn’t contain a triangle) ≤ 2P(G(n, p) doesn’t contain a triangle) = o(1).

Similarly if m = ω(m̂) then m

(n2)
= ω(n−1) and we can conclude that

P(G(n,m) contains a triangle) ≤ 2P(G(n, p) contains a triangle) = o(1).

4.2 Equivalance Between the Two Models

We’ll take a brief detour from small subgraphs, now that we’ve introduced Chebyshev’s in-
equality, to quickly prove a useful theorem about the equivalence of the models G(n, p) and
G(n,m).

Theorem 4.5. 1. Let P be a property, p = p(n) ∈ [0, 1] and a ∈ [0, 1]. If for every sequence
m(n) such that m =

(
n
2

)
p+O

(
n
√
p(1− p)

)
it holds that P(G(n,m) ∈ P)→ a as n→∞,

then also P(G(n, p) ∈ P)→ a.

2. Let P be a monotone property, m = m(n) ∈ [
(
n
2

)
] and a ∈ [0, 1]. If for every p = p(n) ∈

(0, 1) such that p = m

(n2)
+ O

(√
m((n2)−m)

n6

)
it holds that P(G(n, p) ∈ P) → a as n → ∞,

then also P(G(n,m) ∈ P)→ a.

Proof of 1. Let C be a large constant and define, for each n,

M(C) =

{
m :

∣∣∣∣m− (n2
)
p

∣∣∣∣ ≤ C
√(

n

2

)
p(1− p)

}
.

Note that, if m(n) is a sequence with m(n) ∈M(C) for each m then, by assumption P(G(n,m) ∈
P)→ a. Let m− = m−(n,C) be the element ofM(C) which minimises P(G(n,m−)) ∈ P. Then

P(G(n, p) ∈ P) =

(n2)∑
m=0

P(G(n,m) ∈ P)P(e(G(n, p)) = m)

≥
∑

m∈M(C)

P(G(n,m) ∈ P)P(e(G(n, p)) = m)

≥ P(G(n,m−) ∈ P)P(e(G(n, p)) ∈M(C)).

Now, since we know e(G(n, p)) is distributed as a binomial random variable with N :=(
n
2

)
trials and success probability p, we have that E

(
e(G(n, p))

)
= Np and furthermore that

Var
(
e(G(n, p))

)
= Np(1− p).
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Hence, by Chebyshev’s inequality, Lemma 4.3,

P(e(G(n, p)) 6∈ M(C)) ≤
Var
(
e(G(n, p))

)
C2Np(1− p)

=
1

C2
.

Hence,

P(G(n, p) ∈ P) ≥
(

1− 1

C2

)
P(G(n,m−) ∈ P)

and by taking limits as n→∞ we see that lim inf P(G(n, p) ∈ P) ≥
(
1− 1

C2

)
a.

Conversely, if m+ ∈M(C) maximises P(G(n,m+) ∈ P) then

P(G(n, p) ∈ P) =

(n2)∑
m=0

P(G(n,m) ∈ P)P(e(G(n, p)) = m)

≤
∑

m∈M(C)

P(G(n,m) ∈ P)P(e(G(n, p)) = m) +
∑

m6∈M(C)

P(G(n,m) ∈ P)P(e(G(n, p)) = m)

≤ P(G(n,m+) ∈ P) + P(e(G(n, p) 6∈ M(C))

≤ P(G(n,m+) ∈ P) +
1

C2
.

and so as before, lim supP(G(n, p) ∈ P) ≤ a+ 1
C2 . Letting C →∞ we see that limP(G(n, p) ∈ P)

exists and is equal to a.

Proof of 2. As with Theorem 2.2 we’ll just consider the case where P is increasing. If m is 0 or
N :=

(
n
2

)
infinitely often, then it is simple to check that the statement holds, so we may assume

that m 6= 0, N Let C be a large constant, p0 = m
N , and define

p+ = min

{
1, p0 + C

√
p0(1− p0)

N

}
and p− = max

{
0, p0 − C

√
p0(1− p0)

N

}
.

Note that, by assumption limn→∞ P(G(n, p+) ∈ P) = a = limn→∞ P(G(n, p−) ∈ P).

We have

P(G(n, p+) ∈ P) =
N∑
k=0

P(G(n, k) ∈ P)P(e(G(n, p+)) = k)

≥ P(G(n,m) ∈ P)P(e(G(n, p+)) ≥ m)

≥ P(G(n,m) ∈ P)− P(e(G(n, p+)) < m).

and similarly

P(G(n, p−) ∈ P) =
m∑
k=0

P(G(n, k) ∈ P)P(e(G(n, p+)) = k) +
N∑

k=m+1

P(G(n, k) ∈ P)P(e(G(n, p+)) = k)

≤ P(G(n,m) ∈ P) + P(e(G(n, p−)) > m).

As before E
(
e(G(n, p+))

)
= Np+ and

Var
(
e(G(n, p+))

)
= Np+(1−p+) ≤ N

(
p0 + C

√
p0(1− p0)

N

)
(1−p0) ≤ Np0(1−p0)+C

√
Np0(1− p0)
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If p+ = 1, then P(e(G(n, p+)) < m) = 0. Otherwise, by Chebyshev’s inequality

P(e(G(n, p+)) < m) ≤
Var
(
e(G(n, p+))

)(
E
(
e(G(n, p+))

)
−m

)2
≤
Np0(1− p0) + C

√
Np0(1− p0)

(Np+ −Np0)2

=
Np0(1− p0) + C

√
Np0(1− p0)

C2Np0(1− p0)

=
1

C2
+

1

C
√
Np0(1− p0)

≤ 1

C2
+

√
2

C
.

Where the last line follows since, writing m := αN , we have that

Np0(1− p0) = N
m

N
(1− m

N
) =

m(N −m)

N
= α(1− α)N.

It is a simple exercise to show that this function is convex on [0, 1] and hence, since m 6= 0, N ,
it takes its minimum at m = 1 or N − 1, and in particular is always at least 1

2 . A similar

computation shows that P(e(G(n, p−)) > m) ≤ 1
C2 +

√
2
C .

Hence

a− 1

C2
−
√

2

C
≤ lim inf P(G(n,m) ∈ P) ≤ lim supP(G(n,m) ∈ P) ≤ a+

1

C2
+

√
2

C
.

Letting C →∞ as before gives us the claimed result.

4.3 Small Subgraphs

As we saw in the previous section, we can calculate explicitly the threshold for the existence of
a triangle in G(n, p). Can we do a similar thing for an arbitary fixed graph H? Well, we can
calculate as before the expected number of copies of G in G(n, p).

Indeed, let us denote by C(n,H) the set of copies of H in Kn then we have that

|C(n,H)| =
(

n

v(H)

)
v(H)!

|Aut(H)|
= Θ(nv(H)).

Therefore, if we let XH = XH(n, p) be the random variable which counts the number of copies
of H in G(n, p), then, since XH can be decomposed as the sum of indicator random variables of
the existence of each copy of H in C(n,H),

E(XH) = |C(n,H)|pe(H) = Θ(nv(H)pe(H)).

Hence,

lim
n→∞

E(XH) =


0 if p = o

(
n
− v(H)
e(H)

)
,

∞ if p = ω

(
n
− v(H)
e(H)

)
.
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Let us denote by ρ(H) = e(H)
v(H) , which we call the density of H. So, we might expect that

p̂ = n
− 1
ρ(H) is a threshhold for containing a copy of H. However, if H contains a subgraph H ′

that is much denser that H itself, then even when p � n
− 1
ρ(H) we shouldn’t expect to contain

any copies of H ′. However, we can’t contain a copy of H without containing a copy of H ′!

So, at the very least, we need to make sure that we contain every subgraph of H, so perhaps
the proper quantity to be considering will be the maximum subgraph density

m(H) = max{ρ(H ′) : H ′ ⊆ H, e(H ′) ≥ 1}.

Let us also define the following quanitity, which will be useful

Φ(H) = Φ(H,n, p) = min{E(XH′) : H ′ ⊆ H, e(H ′) ≥ 1}.

Note that Φ(H) = o(1) if p = o
(
n
− 1
m(H)

)
and Φ(H) = ω(1) if p = ω

(
n
− 1
m(H)

)
.

Theorem 4.6. For every graph H with e(H) ≥ 1, p̂ = n
− 1
m(H) is a threshold for the property

that G(n, p) contains a copy of H.

Proof. Suppose first that p = o
(
n
− 1
m(H)

)
. There is some subgraph H ′ of H with ρ(H ′) = m(H)

and hence
E(XH′) = Θ

(
nv(H′)pe(H

′)
)

= o(1).

Hence by Markov’s inequality

P(H ⊆ G(n, p)) ≤ P(H ′ ⊆ G(n, p)) ≤ E(XH′) = o(1).

So, let us suppose instead that p = ω
(
n
− 1
m(H)

)
. We wish to show that P(H ⊆ G(n, p))→ 1.

Since m(H) ≥ ρ(H), we know from the previous calculation that E(XH) = ω(1), so let us
calculate the variance of XH .

Given a copy C ∈ C(n,H) let us denote by AC the event that C ⊆ G(n, p). Note that, if
C,D ∈ C(n,H), then AC and AD are independent if E(C) and E(D) don’t intersect, and if they
do intersect, then their intersection is a subgraph of H. Furthermore, for a fixed copy C of H
and a fixed subgraph H ′ ⊆ H there are Θ(nv(H)−v(H′)) many D ∈ C such that C ∩D = H ′.
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Hence, by our standard expression

Var(XH) =
∑
C∈C

P(AC)
∑
D∈C

(P(AD|AC)− P(AD))

= Θ
(
nv(H)pe(H)

) ∑
H′⊆H
e(H′)≥1

Θ
(
nv(H)−v(H′)

)(
pe(H)−e(H′) − pe(H)

)

= Θ

n2v(H)p2e(H)
∑
H′⊆H
e(H′)≥1

1− pe(H′)

nv(H′)pe(H′)



= Θ

E(XH)2
∑
H′⊆H
e(H′)≥1

1− pe(H′)

E(XH′)


= Θ

(
(1− p)E(XH)2

Φ(H)

)
,

since there are only finitely many H ′ ⊆ H.

Hence by Chebyshev’s inequality

P(XH = 0) ≤ Var(XH)

E(XH)2
≤ Θ

(
1

Φ(H)

)
.

Firstly note that, when p = ω(n
− 1
m(H) ) we can apply Chebyshev’s inequality to see that for

any ε > 0

P(|XH − E(XH)| ≥ εE(XH)) ≤ Θ

(
ε2

Φ(H)

)
= o(1)

and so with high probability XH = (1 + o(1))E(XH).

Also, we note that we have actually showed that, for any p

1− Φ(H) ≤ P(H 6⊆ G(n, p)) ≤ Θ

(
1

Φ(H)

)
.

Can we say more about this probability? In order to do so we will need to introduce some new
and useful probabilistic tools.

4.4 Harris’ Inequality and Janson’s Inequality

Suppose we have some finite set A, and some function p : A→ [0, 1]. We let Ap be the random
variable given by choosing a random subset of A, including each a ∈ A independently with
probability p(a). Alternatively the distribution of Ap is given by

P(Ap = B) =
∏
a∈B

p(a)
∏
a6∈B

(1− p(a)) for every B ⊆ A.
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Note that, when A = E(G) and p is constant, this is precisely how we build the random graph
G(n, p).

We want to consider the following problem: Given a collection of subsets B ⊆ 2A, what can
we say about the probability that no B ∈ B is contained in Ap? Well, if the subsets B were
disjoint, then the probability that B ⊆ Ap would be independent for different B and hence

P(B 6⊆ Ap for all B ∈ B) =
∏
B∈B

P(B 6⊆ Ap) =
∏
B∈B

(1− P(B ⊆ Ap)) = Θ(e−
∑
B∈B P(B⊆Ap)),

as long as no P(B ⊆ Ap) is too large. Note that µ =
∑

B∈B P(B ⊆ Ap) is the expected number
of B ∈ B contained in Ap. The aim of this next section will be to show that, as long as the sets
B ∈ B are ‘not too dependent’, the probability that no B ∈ B is contained in Ap does behave
approximately like e−µ.

The first inequality we will need is Harris’ inequality, which basically tells us that increasing
or decreasing events are positively correlated. For example, suppose we’re looking at a random
graph and we’re considering the events that a pair of vertices u and v are connected, call it Eu,v
and also that a pair of vertices x and y are connected, say Ex,y. Since adding extra edges only
helps vertices to be connected, we should expect that knowing that Eu,v happens should make
it more likely that Ex,y happens, that is

P(Ex,y|Eu,v) ≥ P(Ex,y),

or equivalently
P(Ex,y and Eu,v) ≥ P(Ex,y)P(Eu,v).

Since the event that each B 6⊆ Ap is a decreasing event, this will allow us to give a lower bound
on the probability that all the events happen, in terms of the probabilities that each individual
event happens.

A function f : 2A → R is increasing if for every C ⊆ B ⊆ A we have f(C) ≤ f(B), and
decreasing if for every C ⊆ B ⊆ A we have f(B) ≤ f(C). For example, the characteristic
function of an increasing/decreasing property is increasing/decreasing.

Lemma 4.7. [Harris’ inequality] Let f1, f2 : 2A → R be increasing/decreasing functions and let
Y ∼ Ap be as above. Then

E(f1(Y )f2(Y )) ≥ E(f1(Y ))E(f2(Y )).

Remark 4.8. If we take fi to be the indicator function for an increasing/decreasing event Ei
for each i, we can conclude that

P(E1 and E2) ≥ P(E1)P(E2).

Proof. Let us write Xi = fi(Y ) for i = 1, 2 and assume without loss of generality that fi is
increasing. We will induct on |A|. The base case, A = ∅ is clear, since Y takes only one value.

Suppose then that |A| ≥ 1 and let us write A = {a1, . . . , an}. Let A′ = A \ {an} and let
Y ′ = Y ∩A′. Note that Y ′ ∼ A′p′ where p′ is the restriction of p to A′.

Let us consider the functions f0,i : 2A
′ → R given by f0,i(B) = fi(B) for i = 1, 2, and the

random variables Z0,i = f0,i(Y
′). Note that f0,i is increasing for each i and

Z0,i ∼ (Xi|an 6∈ Y )
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Note that, for fixed a and b, by linearity of expectation

E((X1 − a)(X2 − b))− E(X1 − a)E(X2 − b) = E(X1X2)− E(X1)E(X2)

and hence we may assume that E(Z0,i) = 0 for i = 1, 2. Similarly we can define f1,i and Z1,i by
taking f1,i(B) = fi(B ∪{an}) and Z1,i = f1,i(Y

′). Note that, since the fi are increasing we have
that

E(Z1,i) ≥ E(Z0,i) ≥ 0 for i = 1, 2.

However we can imply the induction hypothesis to both pairs of random variables to conclude
that

E(Z0,1Z0,2) ≥ E(Z0,1)E(Z0,2) = 0,

E(Z1,1Z1,2) ≥ E(Z1,1)E(Z1,2) ≥ 0,

Also we can expand out by the definition of conditional probability

E(X1X2) = E(X1X2|an ∈ Y )P(an ∈ Y ) + E(X1X2|an 6∈ Y )P(an 6∈ Y )

= E(Z1,1Z1,2)p(an) + E(Z0,1Z0,2)(1− p(an))

≥ E(Z1,1Z1,2)p(an).

Furthermore,

E(X1)E(X2) = (E(Z0,1)(1− p(an)) + E(Z1,1p(an)) (E(Z0,2)(1− p(an)) + E(Z1,2p(an))

= E(Z1,1)E(Z1,2)p(an)2

and hence, since p(an) ≤ 1

E(X1X2) ≥ E(Z1,1Z1,2)p(an) ≥ E(Z1,1)E(Z1,2)p(an)2 = E(X1)E(X2).

We note the following corollary that will be useful. We will use the fact that 1− x ≥ e−
x

1−x .

Corollary 4.9. Let B be a collection of subsets of a set A, let p ∈ (0, 1) and let Y ∼ Ap. If
µ = E(|{B : B ∈ B, B ⊆ Y }|), then

P(B 6⊆ Y for all B ∈ B) ≥ exp

(
− µ

1−maxB∈B P(B ⊆ Y )

)
.

Proof. Since the events B 6⊆ Y are decreasing, by Lemma 4.7

P(B 6⊆ Y for all B ∈ B) ≥
∏
B∈B

(
1− P(B ⊆ Y )

)
≥ exp

(
−
∑
B∈B

P(B ⊆ Y )

1− P(B ⊆ Y )

)

≥ exp

(
− µ

1−maxB∈B P(B ⊆ Y )

)
.
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So, when none of the individual events B ⊆ Y is very likely, we have a good lower bound on
P(B 6⊆ Y for all B ∈ B), can we also get a good upper bound? Given Y ∼ Ap as before, let us
define µ as before and

∆ =
∑

B1,B2∈B : B1 6=B2,B1∩B2 6=∅

P(B1 ∪B2 ⊆ Y )

where in the latter we note the sum is over unordered pairs.

Lemma 4.10. [Janson’s inequality] Let B be a collection of subsets of a set A and let Y ∼ Ap,
and let µ,∆ be as above. Then

P(B 6⊆ Y for all B ∈ B) ≤ e−µ+∆

Proof. Let us write B = {B1, . . . , Bm} and denote by Ei the event that Bi ⊆ Y . Our aim is to
estimate P(

⋂
iE

c
i ), and to do so we’ll bound, for each i, the probability that Ei doesn’t happen

conditioned on the event that none of the preceding Ej happen. More precisely, we’re going to
show that for every i ∈ [m]

P(Eci |
i−1⋂
j=1

Ecj ) ≤ e
−P(Ei)+

∑
j<i : Bj∩Bi 6=∅

P(Ei∩Ej)
.

The result will then follow by taking the product of both sides over i ∈ [m]. For example, when
i = 1 we have

P(Ec1) = 1− P(E1) ≤ e−P(E1).

For an arbitrary i we’re interested in the set of indices

D = {j < i : Bi ∩Bj 6= ∅},

I = {j < i : Bi ∩Bj = ∅}.

Let us define ED =
⋃
j∈D Ej and EI =

⋃
j∈I Ej . We have that

P

Ei| i−1⋂
j=1

Ecj

 = P(Ei|EcD ∩ EcI)

=
P(Ei ∩ EcD ∩ EcI)

P(EcD ∩ EcI)

≥
P(Ei ∩ EcD ∩ EcI)

P(EcI)

=
P(Ei ∩ EcD ∩ EcI)

P(Ei ∩ EcI)
P(Ei ∩ EcI)

P(EcI)
.

However, since Ei is indepedent of EcI we have that
P(Ei∩EcI )

P(EcI ) = P(Ei). Hence

P

Ei| i−1⋂
j=1

Ecj

 ≥ P(Ei)P(EcD|Ei ∩ EcI).

However, we note that we can think of P(EcD|Ei ∩ EcI) in another way. Let’s consider a
random variable Y ′ ∼ (Y |Bi ⊆ Y ). Note that Y ′ is just distributed as Ap̂ where p̂ = p on A \Bi
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and p̂ = 1 on Bi. If we define E′j to be the event that Bj ⊆ Y ′, and go on to define E′D and E′I
as before, then we have that

P(EcD|Ei ∩ EcI) = P(E
′c
D|E

′c
I )

However, E
′c
D and E

′c
I are decreasing events, and hence by Harris’ inequality

P(E
′c
D|E

′c
I ) ≥ P(E

′c
D) = P(EcD|Ei).

Then, by the union bound

P(EcD|Ei) = 1− P(ED|Ei) ≥ 1−
∑
j∈D

P(Ej |Ei).

Therefore we can conclude that

P(EcD|Ei ∩ EcI) ≥ 1−
∑
j∈D

P(Ej |Ei).

Hence,

P

Eci | i−1⋂
j=1

Ecj

 = 1− P

Ei| i−1⋂
j=1

Ecj


≤ 1− P(Ei)P(EcD|Ei ∩ EcI)

≤ 1− P(Ei)

1−
∑
j∈D

P(Ej |Ei)


= 1− P(Ei) +

∑
j∈D

P(Ej ∩ Ei)

≤ e−P(Ei)+
∑
j∈D P(Ei∩Ej).

Hence if ∆ is small compared to µ then we get an upper bound that is asymptotically very
similar to the lower bound. If ∆ ≥ µ then it seems that Janson’s inequality doesn’t tell us
much, but actually we can still get an exponential upper bound on this probability as long as
∆ = o(µ2).

Lemma 4.11. [Generalised Janson’s Inequality] Let B, A, Y ∼ Ap, µ and ∆ be as above. If
2∆ ≥ µ, then

P(B 6⊆ Y for all B ∈ B) ≤ e−
µ2

4∆ .

Proof. Clearly for any subset B′ ⊆ B we have

P(B 6⊆ Y for all B ∈ B) ≤ P(B 6⊆ Y for all B ∈ B′).

Let µ′ and ∆′ be the same quantities computed for B′. The idea will be to form a random subset
B′ of B by keeping each B ∈ B independently with probability q, where we will choose q in an
optimal fashion later. How will this affect µ′ and ∆′?
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Well, E(µ′) = qµ, since we keep each B ∈ B with probability q. Similarly E(∆′) = q2∆.
Hence by linearity of expectation

E(µ′ −∆′) = qµ− q2∆.

Choosing q to maximise this quantity we see that it is best to take q = µ
2∆ (which is indeed ≤ 1

and so a valid choice of q), giving

E(µ′ −∆′) =
µ2

4∆
.

Since the expected value of µ′−∆′ is large, there must be at least one choice of B′ for which

(µ′ −∆′) ≥ µ2

4∆ . Hence, using Janson’s inequality,

P(B 6⊆ Y for all B ∈ B) ≤ P(B 6⊆ Y for all B ∈ B′) ≤ e−µ′+∆′ ≤ e−
µ2

4∆ .

4.5 Small Subgraphs Revisited

Given a fixed graph H, recall that, letting XH′ be the number of copies of H ′ in G(n, p) for any
H ′, we defined

Φ(H) = Φ(H,n, p) = min{E(XH′) : H ′ ⊆ H, e(H ′) ≥ 1}.

Theorem 4.12. Let H be a graph with at least one edge. Then for any p = p(n)

e
−Φ(H)

1−p ≤ P(H 6⊆ G(n, p)) ≤ e−Θ(Φ(H)).

Proof. We want to use the inequalities from the previous section, and to do so we think about
G(n, p) as coming from E(G)p in the obvious way. We will take our set B to be the set C(n,H)
of all copies of H in Kn (or at least, the edge sets).

Then, by applying Corollary 4.9 to the set B′ of copies of the densest subgraph H ′ ⊆ H, we
see that

P(H 6⊆ G(n, p)) ≥ P(H ′ 6⊆ G(n, p)) ≥ exp

(
− E(XH′)

1− pe(H′)

)
≥ e−

Φ(H)
1−p .

For the upper bound we will use Janson’s inequalities. So we need to calculate

µ =
∑
C∈C

P(C ⊆ G(n, p)) = E(XH)

and
∆ =

∑
C1,C2∈C(n,H) : C1 6=C2

C1∩C2 6=∅

P(C1 ∪ C2 ⊆ G(n, p)).

Note that, by our standard arguments

∆ ≤
∑
H′⊆H
e(H′)≥1

n2v(H)−v(H′)p2e(H)−e(H′)
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To estimate the latter we split into cases depending on the subgraph H ′ ⊆ H given by C1 ∩C2.
In this case C1 ∪C2 spans 2v(H)− v(H ′) many vertices, and so there at most n2v(H)−v(H′) such
pairs to consider. The probability that C1∪C2 ⊆ G(n, p) is then given by p2e(H)−e(H′) and hence

∆ ≤
∑
H′⊆H
e(H′)≥1

n2v(H)−v(H′)p2e(H)−e(H′)

= n2v(H)p2e(H)
∑
H′⊆H
e(H′)≥1

n−v(H′)p−e(H
′)

= E(XH)2
∑
H′⊆H
e(H′)≥1

1

E(XH′)

≤ O
(

µ2

Φ(H)

)

However, we can’t just immediately apply Jansons’ inequality, since it might be that ∆ ≥ µ,
so we split into two cases. If ∆ ≤ µ

2 then, by Janson’s inequality (Lemma 4.10) we see that

P(H 6⊆ G(n, p)) ≤ e−µ+∆ ≤ e−
µ
2 = e−

E(XH )

2 ≤ e−
Φ(H)

2 .

Otherwise, if ∆ ≥ µ
2 we use the generalised Janson’s inequality (Lemma 4.11), and see that

P(H 6⊆ G(n, p)) ≤ e−
µ2

4∆ = e−Ω(Φ(H)).

Note that in particular, we can conclude from the above that the existence of a copy of H in
G(n, p) does not have a sharp threshold. Indeed, since E(XH′) = Θ(nv(H′)pe(H

′)) we have that

for any δ > 0 there is some γ > 0 such that if δn
− 1
m(H) ≤ p(n) ≤ δ−1n

− 1
m(H) then

γ ≤ Φ(H) ≤ γ−1

and hence there is some ε such that

ε ≤ P(H 6⊆ G(n, p)) ≤ 1− ε.

Similarly, using our equivalence between the two models from Theorem 4.5, we can see that the
same holds in G(n,m).

Using some more probabilistic tools we can in fact say quite precisely how XH is distributed
within this range of p, at least for well behaved H. Here the notion of well behaved we will
need is strictly balanced. This means, that for every proper subgraph H ′ ( H we have that
ρ(H ′) < ρ(H) = m(H), or in other words, every subgraph of H has is strictly less dense than
H itself.

Now, XH is the sum of indicator random variables, one for each C ∈ C(n,H), however these
random variables are not independent. However, we might still expect XH to behave a little

bit like Bin(N, q) where N = |C(n,H)| ≈ nv(H)

|Aut(H)| is the number of potential copies of H and
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q = pe(H) is the probability any one is contained in G(n, p). In the range we’re looking at,

p = αn
− 1
m(H) = αn

− v(H)
e(H) and so

Nq = αe(H)n−v(H) nv(H)

|Aut(H)|
=

αe(H)

|Aut(H)|
= λ(α,H) := λ.

Hence Bin(N, q) tends in distribution to Po(λ), that is, for every k ∈ N

P(Bin(N, q) = k)→ P(Po(λ) = k)

as n → ∞, which we write as Bin(N, q)
d→ Po(λ). So we might expect XH to behave ‘like’

Po(λ). We shall see that this is the case, but to do so we will need to use some theorems that
essentially tell us that the Poisson distribution is determined by its moments.

Definition. We say a real random variable X is determined by its moments if E(Xk) < ∞
for every k ∈ N and every real random variable Y such that E(Y k) = E(Xk) for every k ∈ N
satisfies X ∼ Y .

Roughly, a random variable will be determined by its moments as long as the sequence of
its moments doesn’t grow too quickly. We will use, without proof, the fact that the Poisson
distribution is determined by its moments. Furthermore, this property behaves nicely under
limits.

Theorem 4.13. Let Z be a real random variable which is determined by its moments. If
(Xi : i ∈ N) is a sequence of real random variables such that E

(
Xk
n

)
→ E

(
Zk
)

for every k ∈ N
then Xn

d→ Z.

In fact, rather than the moments of Z, it will be slightly easier to work with a similar concept
called the factorial moments, which are

E ((Z)k) = E
(
Z(Z − 1)(Z − 2) . . . (Z − k + 1)

)
.

It is a simple exercise to show that both the monomials {1, x, x2, . . . , xk} and the descending
factorials {1, x, x(x−1), . . . , x(x−1)(x−2) . . . (x−k+1)} form bases of the space of polynomials
of degree ≤ k and hence, by the linearity of expectation

E(Xk)→ E(Zk) for all k ∈ N if and only if E ((X)k)→ E ((Z)k) for all k ∈ N.

For example the factorial moments of Po(λ) can be calculated to be

E ((Po(λ))k) =

∞∑
`=0

e−λ
λ`

`!
(`)k = λke−λ

∞∑
`=k

λ`−k

(`− k)!
= λk.

Another useful fact is as follows - if X =
∑

A∈A 1A then

(X)k =
∑

A1,...,Ak∈A distinct

1⋂k
i=1 Ak

and so

E ((X)k) =
∑

A1,...,Ak∈A distinct

P

(
k⋂
i=1

Ai

)
.
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Theorem 4.14 (Bollobás / Karoński-Ruciński). If H is a strictly balanced graph, C > 0 and

pn
1

m(H) → α as n→∞, then XH
d→ Po(λ), where λ = αe(H)

|Aut(H)| .

Proof. By the preceding discussion, it will be sufficient to show that for every integer k ∈ N we
have that E ((XH)k)→ λk as n→∞. Since XH is a sum of indicator random variables we can
write

E ((XH)k) =
∑

C1,...,Ck∈C(n,H) distinct

P

(
k⋃
i=1

Ci ⊆ G(n, p)

)
.

Let us split this sum into two terms Σ1 and Σ2 where Σ1 is the sum over the tuples (C1, . . . , Ck)
which are mutually vertex-disjoint, and Σ2 is the rest. We expect that Σ1 should be the main
contriubtion to this sum, and Σ2 should be negligible. Indeed

Σ1 =
∑

C1,...,Ck∈C(n,H) mutually vertex-disjoint

P

(
k⋃
i=1

Ci ⊆ G(n, p)

)

=
k−1∏
i=0

(∏v(H)−1
j=0 (n− v(H)i− j)

|Aut(H)|

)
· pe(H)

= (1 + o(1))

(
nv(H)pe(H)

|Aut(H)|

)k

= (1 + o(1))


(
pn

1
m(H)

)e(H)

|Aut(H)|


k

→

(
αe(H)

|Aut(H)|

)k
= λk

So, let us show that Σ2 is o(1). Let et be the minimum number of edges contained in a union
of k copies of H on t vertices. Then

Σ2 ≤
kv(H)−1∑
t=v(H)

ntpet =

kv(H)−1∑
t=v(H)

(
np

et
t

)t
.

Hence, it would be enough to show that et
t > m(H) when t ≤ kv(H)−1, since then np

et
t = o(1).

In other words, if C1, . . . , Ck are copies of H and v (C1 ∪ . . . ,∪Ck) < kv(H), then ρ(C1 ∪
. . . ,∪Ck) > m(H) = ρ(H).

Suppose first that k = 2. So, we have two copies C1 and C2 of H such that v(H) ≤
v(C1 ∪ C2) ≤ 2v(H)− 1. We note that v(C1 ∪ C2) + v(C1 ∩ C2) = v(C1) + v(C2) and similarly
e(C1 ∪ C2) + e(C1 ∩ C2) = e(C1) + e(C2). Hence

e(C1 ∪ C2)

v(C1 ∪ C2)
=
e(C1) + e(C2)− e(C1 ∩ C2)

v(C1) + v(C2)− v(C1 ∩ C2)

However, e(C1)
v(C1) = ρ(H) = m(H) = e(C2)

v(C2) and if ∅ 6= C1 ∩C2 6= H we have that e(C1∩C2)
v(C1∩C2) < m(H)

and so
e(C1) + e(C2)− e(C1 ∩ C2)

v(C1) + v(C2)− v(C1 ∩ C2)
> m(H).
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Otherwise, v(C1 ∩ C2) = 1 and e(C1 ∩ C2) = 0 and the above still holds.

Suppose then that k ≥ 3. In this case there is some index j such that (Ci : i 6= j) are still not
mutually vertex disjoint, without loss of generality j = k. Let F1 =

⋃k−1
i=1 Ci and F2 = Ci. By

the induction hypothesis ρ(F1) > m(H), ρ(F2) = m(H) and since F1 ∩ F2 ⊆ H if F1 ∩ F2 6= ∅
then, ρ(F1 ∩ F2) ≤ m(H), and so

e(F1 ∪ F2)

v(F1 ∪ F2)
=
e(F1) + e(F2)− e(F1 ∩ F2)

v(F1) + v(F2)− v(F1 ∩ F2)
> m(H).

Otherwise, e(F1 ∩ F2) = v(F1 ∩ F2) = 0, and the above still holds.
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5 Evolution of the random graph

5.1 The Sub-Critical Phase

Let us return to the questions of the how the random graph process G(1), G(2), . . . , G(
(
n
2

)
)

develops over time, in particular in terms of its component structure. We will see that we can
split this development into clearly distinguishable phases. For this purpose, we will be interested
in making statements about G(n,m) that hold with high probability, but in order to do so it
will be easier to talk about the model G(n, p) with p = m/

(
n
2

)
. Using Theorems 2.2 and 4.5 we

can translate between statements in both models.

So, from the results of last section we know that, if p = o(n−2) then we don’t expect there to
be any edges at all in the random graph (although in the uniform model this doesn’t translate
to an interesting statement).

As p gets larger, edges will start to appear, but at first they will be disjoint, and so G(n, p)
will likely be a matching. At certain points, larger subgraphs will start to appear. For example,

by Theorem 4.6 the path of length two has a threshold at p̂ = n−
3
2 and so for p = o

(
n−

3
2

)
whp G(n, p) will contain no paths of length two, and so will be a matching, whereas when

p = ω
(
n−

3
2

)
whp G(n, p) will contain a path of length two. Translated to the uniform model,

this happens around the threshold m̂ = p̂
(
n
2

)
= Θ(

√
n).

As p increases, larger and larger subgraphs will start to appear, and in particular similar
statements can be made for any fixed tree of size t. Indeed, it’s an easy calculation that
m(T ) = ρ(T ) = t−1

t and hence we see that, when

n−
t
t−1 � p� n−

t+1
t

then with high probability each component of G(n, p) will be a tree on at most t vertices. A
similar statement holds in G(n,m) when

n2− t
t−1 = n

t−2
t−1 � m� n

t−1
t = n2− t+1

t .

Furthermore, it is simple to check that any graph which contains a cycle has m(H) ≥ 1. So,
if m grows like nε and we let ε increase from 0 to 1, then in this range G(n,m) will be a forest,
with the largest component growing as a function of ε. In fact, G(n,m) continues to be acyclic
all the way up until m is almost of order n.

Theorem 5.1. If p = o
(

1
n

)
, and so p

(
n
2

)
= o(n), then with high probability G(n, p) is a forest.

Proof. Let us denote by X the number of cycles in G(n, p). We can calculate that

E(X) ≤
n∑
k=3

(
n

k

)
(k − 1)!

2
pk

≤
n∑
k=3

(np)k
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However since np → 0, for large enough n we can bound this using the formula for the sum of
a geometric series as

E(X) ≤ np

1− np
= o(1).

Hence E(X) = o(1) and so, by Markov’s inequality (Lemma 4.1),

P(X ≥ 1) ≤ E(X)→ 0.

It follows that with high probability G(n, p) contains no cycles, and hence is a forest.

So, what happens when m = Θ(n)? It turns out a really startling transition happens at this
stage. When m is just a little smaller than n/2, G(n,m) still only has very small components,
and is quite close to a forest. On the other hand, when m is just a little large than n/2, suddenly
the behaviour of G(n,m) changes, and a single ‘giant’ component emerges, of linear order in n.

In order to analyse the component structure of G(n, p) where p = c
n we are going to use an

algorithmic procedure called breadth first search (BFS). The idea is to recursively expose the
component containing a vertex v using a ‘First-in-first’ out procedure. Given a graph G, and
vertex v in V (G) we maintain an ordered list of vertices A, the active vertices, and two sets
of vertices W , the visited vertices, and U , the unvisited vertices, as well as a subgraph T of
G[W ∪A]. Initially we set A(0) = (v), W (0) = {v}, T (0) = ({v}, ∅) and S(0) = ∅.

At each stage t in the algorithm we look at the first vertex in the list A(t) = (a1, . . . , as), and
we look at the neighbourhood of a1 amongst the unvisited vertices, that is, NG(a1) ∩ U(t) =
{w1, . . . , wr}. We mark w1, . . . , wr as active by appending them to the list A(t+ 1) and deleting
them from U(t+ 1), and then mark a1 as visited by adding it to W (t+ 1) and deleting it from
A(t+ 1). Also we add the edges (a1, wi) to T for each 1 ≤ i ≤ r That is:

• A(t+ 1) = (a2, . . . , as, w1, . . . , wr);

• W (t+ 1) = W (t) ∪ {a1};

• U(t+ 1) = U(t) \ {w1, . . . , wr};

• T (t+ 1) = T (t) ∪ {(a1, wi) : i ∈ [r]}.

The algorithm terminates when A is empty.

Let us note a few things about this algorithm. Firstly, at each stage in the algorithm the triple
(W,A,U) partitions the vertex set V (G). Secondly, at each stage in the algorithm one vertex
moves into W , and so after at most n steps the list A is empty and the algorithm terminates.
Also, we note that the subgraph T is always a tree, with vertex set W ∪ A. Indeed, whenever
we add a vertex to A we add an edge to that vertex to T from a vertex of W , and at each stage
of the algorithm we only add edges from W ∪A to U , hence we can never form a cycle. Finally,
we note that if G is connected then eventually every vertex of G will appear in A, which can be
seen for example by inducting on the distance to the root v, and hence eventually every vertex
will appear in T . In this case, it follows that the final tree T (n) is a spanning tree of G.

If we run this algorithm on a random graph G(n, p), starting at a fixed vertex v (and with
some fixed underlying order of the vertices), then we will uncover a spanning tree T over the
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component Cv containing v in G(n, p). Each of the sets considered in the algorithm is now
a random variable, and by analysing these random variables we can hope to discover some
properties of G(n, p).

One useful way to think about the analysis of this algorithm is via the principal of deferred
decisions. Rather than choosing at the beginning of time a random graph G(n, p) we can, in the
process of analysing the algorithm, only choose whether or not an edge is present in the graph
at the point at which that edge is relevant to the algorithm. In our case, this is when we look
at the neighbourhood NG(a1) ∩ U(t). At the point in which we consider where a vertex a1 is
adjacent to a vertex u ∈ U(t), we say that we query the edge (a1, u) and the query is succesful
if the edge lies in the graph.

We can formalise this by considering a sequence of independently identically distributed
random variables (Xi : i ∈ N) which are each Ber(p) random variables. We run the same
algorithm as before, but without reference to any graph, and at stage t rather than adding
NG(a1) ∩U(t) to the active list we instead take the ‘next’ |U(t)| many Xi in the list, let us call
them (X(w) : w ∈ U(t)), and we add w to A(t+ 1) if and only if X(w) = 1. It is relatively clear
that the distribution of A,W,S and T are the same whether we run the algorithm on G(n, p)
or according to this list of random variables, but this change in perspective can help to analyse
the process.

Suppose that run this procedure starting at a vertex v, how large do we expect the component
Cv to be? The first thing we’ll see is that, if c < 1 then we expect the component to die out
before it gets too large. In order to see this we will need some good bounds on the tails of the
binomial distribution.

Lemma 5.2 (The Chernoff bounds). Let X ∼ Bin(n, p), µ = E(X) = np and let t ≥ 0. Then,

• P
(
X ≥ E(X) + t

)
≤ exp

(
− t2

2(µ+ t
3

)

)
;

• P
(
X ≤ E(X)− t

)
≤ exp

(
− t2

2µ

)
.

Theorem 5.3. If c < 1 and p = c
n , and so p

(
n
2

)
≈ cn2 , then with high probability the largest

component of G(n, p) has at most 3
(1−c)2 log n vertices.

Proof. Given an arbitrary vertex v, we will estimate the probability that v belongs to a compo-
nent of size ≥ k by analysing the BFS procedure described above starting at v.

At each stage of the algorithm we look at the neighbourhood of some vertex a1(t) from
within U(t). Let us define Xt to be the number of neighbours we find in stage t. We note
that Xt ∼ Bin(m, p) where m = |U(t)| ≤ n and so Xt is stochastically dominated by Bin(n, p).
By this we mean we can couple Xt with a random variable X ′t ∼ Bin(n, p) such that Xt ≤ X ′t
as functions on the same probability space. Note further that we can can take the X ′t to be
independent for each t.

Now let us note a few things about the algorithm. Firstly, we have that

|W (t) ∪A(t)| = 1 +

t∑
i=1

Xi
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and in each round where A is non-empty, a vertex is added to W . Hence, if v belongs to a
component of size > k, then after the first k rounds of the algorithm

1 +

k∑
i=1

Xi = |W (k) ∪A(k)| ≥ |W (k)| = k.

Hence, the probability that v is contained in a component of size > k is at most

P

(
k∑
i=1

Xi ≥ k

)
≤ P

(
k∑
i=1

X ′i ≥ k

)

However,
∑k

i=1X
′
i ∼ Bin(kn, p), which has expectation knp = ck < k and so by the Chernoff

bounds

P
( k∑
i=1

X ′i ≥ k
)

= P
(

Bin(kn, p) ≥ ck + (1− c)k
)

≤ exp

− (1− c)2k2

2
(
ck + (1−c)k

3

)


≤ exp

(
−(1− c)2k

2

)
.

Hence if k ≥ 3
(1−c)2 log n then

P(v is in a component of size > k) ≤ n−
3
2 .

Hence by the union bound,

P(G(n, p) has a component of size > k) ≤ nn−
3
2 = n−

1
2 = o(1).

So, for m = cn
2 with c < 1 all the components are still quite small. Let us show further that

they are all simple in structure, in that they are close to being trees.

Definition. The excess of a connected component C of a graph is e(C)− v(C). Note that the
excess of a component if −1 if and only if C is a tree and 0 if and only if C contains a unique
cycle. A component if complex if it’s excess is positive, that is, it contains at least two cycles.

Theorem 5.4. If p = 1
n −

s(n)

(n2)
, where s(n) > 0, and so p

(
n
2

)
≈ n

2 − s(n), then the probability

that G(n, p) contains a complex component is at most n2

4s3
. In particular if s = ω(n

2
3 ) then with

high probability G(n, p) contains no complex components.

Proof. If a component of G(n, p) contains at least two cycles, then in particular it has to contain
a subgraph that consist of two cycles joined by by a path (possibly a degenerate path), or a
theta graph (A cycle together with a path joining two points on the cycle).
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We note that all of these graphs can be constructed by taking a path P = v1v2 . . . vk, and
adding two edges to it, one incident to each endpoint {v1, vk} of the graph.

In particular, if we fix a given set of k vertices, then there are at most k2k! such subgraphs
on this set of vertices. Let X denote the number of subgraphs of this type in G(n, p) then we
can calculate

E(X) =
n∑
k=4

(
n

k

)
k2k!pk+1

≤
n∑
k=4

nk

k!
k2k!

1

nk+1

(
1− 2s

n− 1

)k
≤

n∑
k=4

k2

n
exp

(
−2ks

n

)
≤
∫ ∞

0

x2

n
exp

(
−2xs

n

)
dx,

where we can replace the sum by the integral since the function is decreasing on [2,∞] and non-
negative on [0,∞]. Taking a well-chosen change of variables, we set y = 2xs

n so that dy = 2s
n dx

and x2

n = y2 n
4s2

E(X) ≤
∫ ∞

0
y2 n

4s2

n

2s
e−y dy =

n2

4s3

∫ ∞
0

y2

2
e−y dy =

n2

4s3
.

Hence

P(X ≥ 1) ≤ E(X) ≤ n2

4s3
.

So, if we want to know the order of the largest component of Gm whilst m = cn
2 with

c < 1, then we only need to know the order of the largest component which contains either one
(unicyclic) or zero (trees) excess edges. We state without proof the following lemma (although
its proof is just a standard first moment calculation)

Lemma 5.5. Let p = c
n , and so p

(
n
2

)
≈ cn

2 , where c < 1 and let f(n) be a function such that
f(n)→∞. Then with high probability the number of vertices in unicyclic components of G(n, p)
is O(f).

Together with Theorems 5.3 and 5.4 it follows that when m ≈ cn
2 , with c < 1, G(n,m) is still

almost a forest with all components quite small. More precisely, each component of G(n,m) is
either a tree or unicyclic and of size at most 3

(1−c)2 log n, and the number of vertices in unicylic

components is O(f) for any slowly growing function f of n, and so most of the vertices are in
tree components. As we shall see on the example sheet, there is in fact some component of size
Ω(log n), and so the largest component of G(n,m) will be a tree of size Ω(log n).

5.2 The Galton-Watson Process

Let us think more generally about the growth of the tree T (t) we build in the BFS process. Whilst
|T (t)| is small, the size of U(t) is approximately n, and so we expect the size of NG(a1) ∩ U(t)

44



to be approximately distributed as Bin(n, cn). Hence, in the early stages of the BFS process, T
will grow very much like a tree grown via the following idealised process - We start with a single
vertex v and then recursively and independently for each leaf we add Bin(n, cn) many children. If
we expect this ideal process to die out quickly, before our approximation for T starts to fail, then
we should expect the tree we build to be small. On the other hand, whilst this approximation
only holds whilst T is small, if we expect this ideal process to grow very large, then we should
expect T to grow at least to the point that the approximation fails to hold.

So, let us analyse this idealised process, which are called Galton-Watson trees, in a more
general setting. Let (Xi,j : i, j ∈ N) be a family of independent, identically distributed random
variables such that Xi,j ∼ X for every i, j ∈ N. We will define a sequence of random variables
(Zi : i ∈ N) by letting

• Z0 = 1;

• Zi+1 =
∑Zi

j=1Xi,j .

If we think about this in terms of the tree-branching process defined above, we have that Zi
represents the number of vertices in the ith level of the tree. Let us define the extinction
probability

ρX = lim
n→∞

P(Zn = 0)

that is, the probability that at some point the branching process stops. Note that, this sequence
is monotone increasing, since if Zn = 0 then Zn+1 = 0, and so the limit exists.

Lemma 5.6. If E(X) < 1, then ρX = 1.

Proof. Note that E(Z0) = 1 and if i ≥ 0 then

E(Zi+1) =
∞∑
k=0

E(Zi+1|Zi = k)P(Zi = k)

=
∞∑
k=0

P(Zi = k)E

 k∑
j=1

Xi,j


=
∞∑
k=0

P(Zi = k)kE(X)

= E(Zi)E(X).

Hence, since E(Zi) = E(X)i and so if E(X) < 1 it follows by Markov’s inequality that

1− ρX = lim
n→∞

P(Zi ≥ 1) ≤ lim
n→∞

E(Zi) = lim
n→∞

E(X)n = 0.

So, perhaps not surprisingly, if the average number of children at each vertex is less than
one, then the average number of vertices at each level is getting exponentially small.

Note that, if the branching process doesn’t die out on the first step, then in order for it to die
out each of the Z1 many branching processes starting at the first level must die out, and these
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are all just independent copies of the same process. Hence ρX satisfies the following recurrence
relation

ρX = P(X = 0) +
∞∑
k=1

P(X = k)ρkX := fX(ρX).

That is, ρ is a fixed point of the function fX(x) :=
∑∞

k=0 P(X = k)xk. This is in fact a very
well-known function, known as the probability generating function of X, and has a lot of nice
properties.

For example, it is easy to see that fX(0) = P(X = 0) and fX(1) = 1 and, as long as X is not
equal to 0 almost surely, it is clear that fX is strictly increasing. Furthermore, as long as X is
not equal to 0 or 1 almost surely, then

f ′X(x) =

∞∑
k=1

kP(X = k)xk−1

is also strictly increasing. It follows that fX(x) = x has at most one solution in [0, 1). Let us
denote this solution by x0, and let x0 = 1 if there is not solution in [0, 1).

Theorem 5.7. The probability of extinction satisfies ρX = x0.

Proof. By the discussion above, ρX is a fixed point of fX , so it will be sufficient to show that
ρX is the smallest non-negative fixed point. To this end let us consider

Fi(x) = E
(
xZi
)

=

∞∑
k=0

P(Zi = k)xk.

That is, the probability generating function of Zi. Note that F1 = fX and Fi(0) = P(Zi = 0).
Morever

Fi+1(x) = E
(
xZi+1

)
=
∞∑
k=0

E
(
xZi+1 |Zi = k

)
P(Zi = k)

=
∞∑
k=0

P(Zi = k)E
(
xXi,1+Xi,2+...+Xi,k

)
=
∞∑
k=0

P(Zi = k)
k∏
j=1

E
(
xXi,j

)
=
∞∑
k=0

P(Zi = k) (fX(x))k

= Fi(fX(x)).

Hence, Fi(x) = f
(i)
X (x), that is, fX applied i times to x. In particular, Fi(x0) = x0 for all i.

Now,
ρX = lim

n→∞
P(Zn = 0) = lim

n→∞
Fn(0)

However, since Fi is monotone, Fi(0) ≤ Fi(x0) = x0 and so, taking the limit as i → ∞ we can
conclude that

ρX = lim
n→∞

Fn(0) ≤ lim
n→∞

Fn(x0) = x0.
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However, by definition x0 was the smallest non-negative fixed point of fX , and fX(ρx) = ρX ,
and hence x0 = ρX .

Corollary 5.8. If E(X) > 1, then ρX < 1.

Proof. We have that

f ′X(1) =
∞∑
k=0

P(X = k)k = E(X) > 1

and hence fX(x) < x for some x < 1. On the other hand fX(0) = P(X = 0) ≥ 0 and so either
fX(0) = 0 or fX(0) > 0, in which case fX(x) = x must have a solution in (0, 1) by the mean
value theorem.

We note that it is possible to show that ρX = 1 in the critical case when E(X) = 1.

Let us look then at the concrete example we are interested in, where Xn ∼ Bin(n, p) with
p = c

n . In this case

fXn(x) =
∞∑
k=0

(
n

k

)
pk(1− p)n−kxk = (1− p+ xp)n.

So, ρXn will be the smallest fixed point of this equation.

This is not a particularly pleasant expression to work with, however we’re really only inter-

ested in the behaviour as n→∞, in which case we already know that Xn
d→ Po(c).

So, let us look at the limiting distribution Y = Po(c). In this case

fY (x) =

∞∑
k=0

e−c
ck

k!
xk = e−c

∞∑
k=0

(cx)k

k!
= ec(x−1).

Hence ρY satisfies the equation ρY = ec(ρY −1). It will often be convenient to phrase this in terms
of the complementary probability βc = 1− ρY , which satisfies the equation.

βc + e−βcc = 1− ρY + e(ρY −1)c = 1.

However, since

lim
n→∞

(1− p+ xp)n = lim
n→∞

(1 +
c(x− 1)

n
)n = ec(x−1).

it is an exercise in analysis to show that ρXn → ρY = 1− βc.

5.3 The Emergence of the Giant Component

Let us suppose then that p = c
n with c > 1. By analysing the breadth first search process

described at the start of this section, with the help of our results on the branching processes,
we will show that with high probability there will be unique linear sized component in G(n, p),
and that the remaining components are small.

47



Theorem 5.9. Let c > 1 and let p = c
n , and so p

(
n
2

)
≈ cn2 . Then with high probably the largest

component of G(n, p) has size (1+o(1))βcn. Furthermore, with high probability the second largest
component has size at most 16c

(c−1)2 log n.

Proof. We will start by showing there is a gap in the order of components. That is, if we define

k− =
16c

(c− 1)2
log n and k+ = n

2
3 ,

then whp no component of G(n, p) will have order between k− and k+.

In order to do so, we will analyse the breadth first search algorithm starting at some fixed
vertex v ∈ [n].

Claim. With probability 1 − o
(

1
n

)
either v belongs to a component of size ≤ k−, or for every

k− ≤ k ≤ k+ the number of active vertices satisfies

|A(k)| ≥ (c− 1)k

2
.

Proof of Claim. Let Bv be the event that the claim does not hold. If Bv occurs, then there must
be some k− ≤ k ≤ k+ such that the event

Dk = “|A(k)| < (c− 1)k

2
”

occurs, and so P(Bv) ≤
∑k+

k=k− P(Dk).

Recall that |W (k) ∪A(k)| = 1 +
∑k

i=1Xi and that |W (k)| ≤ k and hence if A(k) holds then

1 +
k∑
i=1

Xi < k +
(c− 1)k

2
=

(c+ 1)k

2
.

However, since U(t) is decreasing, we have that |U(t)| ≥ |U(k)| ≥ n − (c+1)k
2 ≥ n − (c+1)k+

2
for all t ≤ k. In particular, the number of neighbours found at each step Xi ≥ X−i ∼ Bin(n′, p),

where n′ = n− (c+1)
2 k+.

Writing m = kn′ = (1 + o(1)kn and µ = mp = (1 + o(1))ck, we see from the Chernoff bounds
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(Lemma 5.2)

P(Bv) ≤
k+∑

k=k−

P (Dk) ≤
k+∑

k=k−

P

(
k∑
i=1

Xi ≤
(c+ 1)k

2

)

≤
k+∑

k=k−

P
(

Bin(m, p) ≤ µ− (1 + o(1))
(c− 1)k

2

)

≤
k+∑

k=k−

exp

(
−

((1 + o(1) (c−1)k
2 )2

2(1 + o(1))ck

)

≤
k+∑

k=k−

exp

(
−(c− 1)2k

9c

)
≤ k+exp

(
−(c− 1)2k−

9c

)
≤ n

2
3 exp

(
−16

9
log n

)
= n

2
3
− 16

9 = n−
10
9 = o

(
1

n

)
.

Note that, if |A(k)| > 0 then the size of the component containing v has size at least k. An
immediate consequence of the the claim, by the union bound, is that with high probability every
vertex v ∈ [n] either belongs to a component of order ≤ k−, or at least k+.

So, what remains is to show that there is a unique component L of order at least k+, and to
estimate the size of L. For the first, it will be sufficient to show that for any two vertices v1 and
v2, the probability that they belong to different components of size ≥ k+ is small.

Suppose that we run the breadth first search algorithm starting at v1 for k+ steps, and
then run it again starting from v2 for k+ steps. If v1 and v2 belong to different components
of size ≥ k+. then neither process dies out before k+ steps, and the trees T1(k+) ⊆ Cv1 and
T2(k+) ⊆ Cv2 that we discover do not share any vertices.

However then the sets A1(k+) and A2(k+) of active vertices are disjoint, and by the claim,

we may assume that both have size at least (c−1)k+

2 . Furthermore, A1(k+) ⊆ U2(k+) and
A2(k+) ⊆ U1(k+), and in the first part of the process we did not query any edges between
A1(k+) and U1(k+), and in the second part of the process we did not query any edges between
A2(k+) and U2(k+). Hence, in the whole process we did not query any of the edges between
A1(k+) and A2(k+).

Therefore, by the principle of deferred decisions, the probability that v1 and v2 belong to
different components of size ≥ k+ is at most the probability that none of these edges are in

G(n, p). There are |A1(k+)||A2(k+)| ≥
(

(c−1)k+

2

)2
many potential edges, and so the probability

that none of these are in G(n, p) is

(1− p)

(
(c−1)k+

2

)2

≤ exp

(
(c− 1)2cn

1
3

4

)
= o

(
n−2

)
.
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Hence the probability that there is some pair of vertices v1 and v2 which belong to different
components of size ≥ k+ is o(1).

So, we have shown that with high probability every vertex of G(n, p) is either in a component
of size ≤ k− or lies in a unique component of size ≥ k+. It remains then to show that this unique
component is actually linear in size, and to estimate it’s density. We will do this by estimating
the number of vertices lying in small components.

Let us write V (G(n, p)) = S ∪ L where S are the vertices in small components and L the
vertices in the large component. Let q(n, p) be the probability that a given vertex v is in S. We
claim that

ρY1 − o(1) ≤ q ≤ ρY2 ,

where Y1 ∼ Bin(n, p) and Y2 ∼ Bin(n− k−, p), and as before ρY is the extinction probability of
the Galton-Watson process with offspring distribution Y .

For the upper bound we note that if v ∈ S then the breadth first search process must stop
before discovering k− many vertices. In this case there are at most k− many discovered vertices
at any step of the process, and so the breadth first search process dominates the Galton-Watson
process with offspring distribution Y2 ∼ Bin(n− k−, p). Then the probability that the breadth
first search process stops before discovering k− many vertices is at most the probability that
the Galton-Watson process with offspring distribution Y2 dies before the tree grows to size k−,
which is definitely at most the probability that the Galton-Watson process dies at all, which is
ρY2 .

On the other hand the Galton-Watson process with offspring distribution Y1 ∼ Bin(n, p)
dominates the breadth first search process and so the probability that the breadth first search
process stops before discovering k− many vertices is at least the probability that the Galton-
Watson process dies before the tree grows to size k−. This is clearly smaller than ρY1 , but we
will see in fact that the probability that the Galton-Watson process dies after the tree grows to
size k− is o(1), and hence this probability is ρY1 − o(1).

Indeed, suppose the tree grows to size exactly k ≥ k− before dying, and let X1, . . . , Xk be the
number of children of the k vertices in the tree. Then we have that k = |T (k)| = |W (k)∪A(k)| =
1 +

∑k
i=1Xi. However by the Chernoff bounds

P

(
k∑
i=1

Xi ≤ k

)
= P

(
Bin(kn, p) ≤ k

)
= P

(
Bin
(
kn,

c

n

)
≤ ck − (c− 1)k

)
≤ exp

(
−(c− 1)2k2

2ck

)
.
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However k− = 16c
(c−1)2 log n and so by summing the geometric series we have that

P( Tree dies after growing to size k−) ≤
∑
k≥k−

exp

(
−(c− 1)2k

2c

)

≤
exp

(
− (c−1)2k−

2c

)
1− exp

(
− (c−1)2

2c

)
= o(1).

However since both Y1 and Y2 tend to Po(c) in distribution, it follows that

q = 1− βc + o(1).

In particular,
E(|S|) = (1− βc + o(1))n.

It remains to show that |S| is well-concentrated about its mean. Later in the lecture we will
develop stronger tools which will make this calculation much simpler, but for now we will do a
simple second moment argument. Let us suppose we wish to calculate

E(|S|(|S| − 1)) =
∑
u

P(u ∈ S)
∑
v 6=u

P(v ∈ S|u ∈ S)

If we condition not just on the fact that u ∈ S, but also on the component Cu of u, which by
assumption has size ≤ k−, then∑

v 6=u
P(v ∈ S|u ∈ S,Cu) ≤ k− +

∑
v 6∈Cu

P(v ∈ S|u ∈ S,Cu).

However, conditioned on the value of Cu, the rest of the graph is distributed as G(n − |Cu|, p)
and hence by the same arguments as before

P(v ∈ S|u ∈ S,Cu) ≤ ρY2 ,

where as before Y2 ∼ Bin(n− k−, p), since by assumption |Cu| ≤ k−.

However, as before ρY2 = 1− βc + o(1), and since this holds uniformly over all choices of Cu,
by the law of total probability

E(|S|(|S| − 1)) ≤ E(|S|)
(
k− + nρY2

)
= (1 + o(1))E(|S|)2.

Since E(|S|) = Ω(n) = ω(1), it follows that Var(S) = o
(
E(|S|)2

)
and so a standard application of

Chebyshev’s inequality gives that with high probability |S| = (1 +o(1)E(|S|) = (1−βc+o(1))n.
Hence with high probability |L| = (1 + o(1))βcn.

5.4 Long Paths in the Super-Critical Phase

In the subcritical regime we saw that with high probability all the components were small,
of logarithmic order, and moreover had a simple structure, almost all the vertices lie in tree
components.
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On the other hand, in the supercritical regime, we have seen that with high probability there
is now a ‘large’ component L, covering a positive proportion of the vertices, and in fact this
component can be seen to have a rich and complex internal structure.

One initial question that was considered in this context was how long is the longest path
in L. Since we expect the vertices in G(n, p) in this range to have constant degree, we should
expect the diameter of the graph to be at least logarithmic, and in fact it can be shown that this
is the case, so there will at least be a path of logarithmic length. However, since the component
itself has linear size, there could potentially exist a path of much larger length.

In order to investigate this question we’re going to consider a different graph exploration
process to the one we considered in the previous section, this time looking at depth first search.

Given a graph G and an order on the vertices V (G) we maintain an ordered list of vertices
A the stack of active vertices and two sets of vertices W the visited vertices and U the unvisited
vertices. Initially we set A(0) = W (0) = ∅ and U(0) = V (G).

At each stage t in the algorithm we first look to see if A(t) is empty. If it is then we move
the smallest unvisited vertex u in U to A, that is

• A(t+ 1) = (u);

• U(t+ 1) = U(t) \ {u};

• W (t+ 1) = W (t).

Otherwise, if A(t) is non-empty we look at the first vertex in the stack A(t) = (a1, . . . , as),
and we look through U(t), in order according to our order on the vertices of G, and for each
u ∈ U(t) we check if (a1, u) ∈ E(G). The first time this happens, say for u1 ∈ U(t) we add u1

to the top of the stack of active vertices, removing it from U . That is

• A(t+ 1) = (u1, a1, . . . , as);

• U(t+ 1) = U(t) \ {u1};

• W (t+ 1) = W (t).

Otherwise, if a1 has no neighbours in U(t), then we remove a1 from A and add it to W , that
is

• A(t+ 1) = (a2, . . . , as);

• W (t+ 1) = W (t) ∪ {a1};

• U(t+ 1) = U(t).

The algorithm terminates when A and U are both empty.
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Let us note a few things about this algorithm. Firstly, at every stage A,U and W are disjoint,
and form a partition of V (G). Secondly, at each step of the algorithm one vertex moves, either
from U to A or from A to W , hence the algorithm terminates in at most 2n steps. Thirdly, at
any stage of the algorithm it had been revealed that there are no edges in G between U and
W . Indeed, a vertex is only added to W (t) when it has no neighbours in U(t), and since U(t)
is non-increasing with t, this the remains true at later stages. Finally we note that the stack A
always forms a path. Indeed, we only ever add a vertex a to the front of A if there is an edge
between a and the first vertex of A and hence a augments the path spanned by A.

As before, if we run this algorithm on a random graph G(n, p) we can consider these paramters
A,U,W as random variables. Furthermore, again using the principal of deferred decisions, it
will be useful to think of these random variables as coming from running the above algorithm
using a sequence (Xi : i ∈ N) of independent identically distributed Ber(p) random variables,
where whenever we ‘check’ if an edge is in E(G) we instead look at the ‘next’ Xi in our sequence
and ‘check’ if Xi = 1. We will refer to each of these actions as a query.

Note that, every positive answer to a query results in a vertex being moved from U to A, and
so after t queries we have that |A∪W | ≥

∑t
i=1Xi (in fact, we get a strict inequality here, since

each time A becomes empty we add a vertex to A without using a query). Conversely, since the
addition of each vertex to A (after the first) is caused by a positive response to a query we have
that after t queries |A| ≤ 1 +

∑t
i=1Xi.

We will need the following simple fact.

Lemma 5.10. Let ε > 0, (Xi : i ∈ N) be independent identically distributed Ber(p) random

variables with p = 1+ε
n and let N = εn2

2 . Then with high probability∣∣∣∣∣
N∑
i=1

Xi −
ε(1 + ε)n

2

∣∣∣∣∣ ≤ n 2
3 .

Proof. Since each Xi ∼ Ber(p) it follows that X :=
∑N

i=1Xi ∼ Bin(N, p), and so E(X) = Np =
ε(1+ε)n

2 . Furthermore Var(X) = np(1− p) ≤ n and so by Chebyshev’s inequality

P

(∣∣∣∣∣
N∑
i=1

Xi − E(X)

∣∣∣∣∣ ≥ n 2
3

)
≤ Var(X)

n
4
3

= o(1).

The following theorem, asserting the existence of a linear path in the super-critical regime
was initially a result of Atjai, Komlós and Szemerédi, although the proof we’re giving based on
the DFS process is due to Krivelevich and Sudakov.

Theorem 5.11. Let ε > 0 be sufficiently small and let p = 1+ε
n . Then with high probability

G(n, p) contains a path on at least ε2n
5 vertices.

Proof. We will run the DFS algorithm described above on the graph G(n, p), using the principle
of deferred decisions to relate this to a sequence (Xi : i ∈ N) of i.i.d Ber(p) random variables

representing the answer to each query. Our aim is to show that, after the first N := εn2

2 queries

the stack is large, of size at least ε2n
5 .
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By Lemma 5.10 we know that with high probability the sequence (Xi : i ∈ N) is such that∣∣∣∣∣
N∑
i=1

Xi −
ε(1 + ε)n

2

∣∣∣∣∣ ≤ n 2
3 .

and so we know approximately how many positive answers we get in the first N queries. Let us
assume that this holds deterministically, and show that it follows that at some point during the
process |A| was large.

We first claim that after N queries there are not too many visited vertices. Indeed suppose
that at this point |W | ≥ 4ε

7 n, then there was some number of queries t ≤ N when |W | = 4ε
7 n.

If at this point |A| > ε2

5 n then we are done, and hence we may assume that |A| < ε2

5 n.

Since V = A ∪ U ∪W it follows that at this point

|U | > n(1− 4ε

7
− ε2

5
).

However then the number of queries which the algorithm has made at this point is at least

t ≥ |U ||W | > n2 4ε

7
(1− 4ε

7
− ε2

5
) >

ε

2
n2 = N,

a contradiction.

Hence we may assume that after N queries |W | < 4ε
7 n. Suppose for a contradiction that at

this point |A| ≤ ε2n
5 and so in particular, since V = A∪U ∪W , U 6= ∅ and so the algorithm has

not yet terminated.

Since each positive query results in a vertex moving from U to A (which may later move to
W ) we have that

|W ∪A| ≥
N∑
i=1

Xi ≥
ε(1 + ε)n

2
− n

2
3 .

Hence, if |A| ≤ ε2n
5 then

|W | ≥ |W ∪A| − |A| ≥ ε(1 + ε)n

2
− ε2n

5
− n

2
3 =

εn

2
+

3ε2n

10
− n

2
3 .

Furthermore

|U | = n− |W ∪A| ≥ n− 4ε

7
n− ε2n

5
.

However, since every edge between U and W has been queried at this point it follows that

N ≥ |U ||W |

≥
(
n− 4ε

7
n− ε2n

5

)(εn
2

+
3ε2n

10
− n

2
3
)

≥ εn2

2
− 2ε2n2

7
+

3ε2n2

10
+O(ε3n2)

≥ εn2

2
+
ε2n2

70
+O(ε3n2),
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contradicting our choice of N = εn2

2 .

Hence, at some point before the first N queries, |A| ≥ ε2n
5 and hence, since A spans a path,

G(n, p) must contain a path of at least this length.

We note that it’s not too hard to go from a long path to a long cycle.

Corollary 5.12. Let ε > 0 be sufficiently small and let p = 1+ε
n . Then with high probability

G(n, p) contains a cycle on at least ε2n
40 vertices.

Proof. We will use the sprinkling method. Let us take p1 =
1+ ε

2
n and p2 such that p1+p2−p1p2 =

p. Note in particular that p2 ≥ ε
2n .

By Theorem 5.11 with high probability there is a path P in G(n, p1) with at least ε2n
20 many

vertices. Let F be the first n
2
3 many vertices on P and let L be the last n

2
3 many vertices on P .

Clearly, if there is any edge between F and L in G(n, p2), then G(n, p) will contain a cycle

on at least |P | − 2n
2
3 ≥ ε2n

40 many vertices.

However, there are n
4
3 many such edges and so the probability that there are no such edges

in G(n, p2) is

P
(

Bin
(
n

4
3 , p2

)
= 0
)

= (1− p2)n
4
3 ≤ e−

ε
2n
n

4
3 ≤ e−εn

1
3 = o(1).

Note, if c = 1 + ε, then the size of the giant component |L| = (1 + o(1))βc can be calculated
to be 2εn+O(ε2n), and so for sufficiently small ε, the path guaranteed by Theorem 5.11, whilst
linear in a length, will still cover only a very small fraction of the giant component, and in fact
it can be shown that the dependence on ε in Theorem 5.11 is optimal.

On the other hand, if c → ∞, then again we can calculate that βc → 1, and so the giant
component covers more and more of the vertex set of G(n, p). Perhaps surprisingly, the same
is true of the longest path - as c increases the longest path in L covers a larger and large
proportion of L, and hence a larger and larger proportion of G(n, p). We’ll show the following
in the exercises.

Theorem 5.13. For every ε > 0 there is a c > 0 such that if p = c
n then with high probability

G(n, p) contains a path or cycle of length (1− ε)n.

So, as c → ∞, if we take p = c
n then the giant component starts to cover almost all of the

vertices of G(n, p). One might naively think that once c = ω(1) we will have covered everything,
the largest component will be a spanning component, and G(n, p) will be connected. However,
as we will see, small local obstructions will force us to wait a bit longer until we start to see
spanning subgraphs in G(n, p). .

55



6 Spanning Subgraphs

6.1 Connectivity Threshold

There is a natural ‘local’ obstruction to a graph being connected, having a vertex of degree 0,
an isolated vertex. On the example sheet we saw that the threshold for this property appears
at p = logn

n .

Lemma 6.1. Let p = logn+C(n)
n .

1. If C(n)→∞ then with high probability δ(G(n, p)) ≥ 1;

2. If C(n)→ −∞ then with high probability δ(G(n, p)) = 0;

So, at the very least, if p = o
(

logn
n

)
then with high probability G(n, p) will be disconnected,

since it will contain an isolated vertex. However, it turns out that in fact this is also the threshold
for connectivity. To see this we will need the following lemma.

Lemma 6.2. Let p = c logn
n for some c > 1

2 . Then with high probability G(n, p) contains no
connected component of size between 2 and n

2 .

Proof. This will follow by a careful estimate of the expected number of such components. Let
Xk be the numbrer of components of size k. Note that, if A ⊆ [n] spans a connected component
of G(n, p) then two events must hold:

• G(n, p)[A] contains a spanning tree;

• There are no edges between A and Ac in G(n, p).

Furthermore, for a fixed A these two events are independent. We can estimate the probability of
the former using Cayley’s formula, that says the number of spanning trees of a complete graph
on k vertices is kk−2. Hence, if A has size k we see that

P(A is a component of G(n, p)) ≤ kk−2pk−1(1− p)k(n−k),

and so

E(Xk) ≤ µk :=

(
n

k

)
kk−2pk−1(1− p)k(n−k).

We will show that
∑n

2
k=2 µk = o(1), and then Markov’s lemma will imply the result claimed.

Using our standard inequalities that
(
n
k

)
≤
(
en
k

)k
and (1− p) ≤ e−p we see that

µk ≤
(en
k

)k (c log n

n

)k−1

kk−2e−pk(n−k)

≤ nek(c log n)k−1e−pk(n−k)

= exp
(

log n+ k + (k − 1) log c+ (k − 1) log log n− pk(n− k)
)
.
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Now, when k is small, say 2 ≤ k ≤ 5 we have that

µk ≤ exp
(

log n+ (k − 1) log log n− pkn+O(1)
)

≤ exp
(

log n+ (k − 1) log log n− ck log n+O(1))
)

= O

(
(log n)k−1

nck−1

)
= o(1),

since ck − 1 > 0.

On the other hand, since k(n− k) ≥ kn
2 for 5 ≤ k ≤ n

2 we have that

µk ≤ exp
(

log n+ k + (k − 1) log c+ (k − 1) log log n− pk(n− k))
)

≤ exp
(

log n+ 2k log log n− pkn
2

)
= exp

(
log n+ 2k log log n− ck log n

2

)
= n

(
(log n)2

n
c
2

)k
= o

(
1

n

)
,

since ck
2 > 2.

So we can conclude that

n
2∑

k=2

µk =

5∑
k=2

µk +

n
2∑

k=5

µk

≤
5∑

k=2

o(1) +

n
2∑

k=5

o

(
1

n

)
= o(1)

Theorem 6.3. Let p = logn+C(n)
n .

1. If C(n)→ −∞ then with high probability G(n, p) is not connected;

2. If C(n)→∞ then with high probability G(n, p) is connected.

In particular, p̂ = logn
n is a sharp threshold for G(n, p) being connected.

Proof. If C(n)→ −∞ then by Lemma 6.1 it follows that with high probability G(n, p) contains
an isolated vertex, and hence is not connected.

Conversely, suppose that C(n)→∞. Since being connected is a monotone property, we may
assume that C(n) = o(log n) and hence p = c logn

n where c := c(n) = 1 +o(1). Hence, by Lemma
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6.2 we have that
n
2∑

k=2

P(Xk > 0) = o(1),

where Xk is the number of components of size k. Furthermore, by Lemma 6.1 we also have that
P(X1 > 0) = o(1). Also we note that G(n, p) is disconected if and only if it has some component
of size at most n

2 . Hence by the union bound

P(G(n, p) is not connected) ≤

n
2∑

k=1

P(Xk > 0) = o(1).

It follows that with high probability G(n, p) is connected.

Hence, the threshold for connectivity really closely coincides with the threshold for having
no isolated vertex. It turns out that this is not just a coincidence, in fact the two thresholds
are very delicately related. Indeed, we will show that, in the random graph process, with high
probability the moment that the graph becomes connected is precisely the moment when the
last isolated vertex disappears.

To make this precise let us consider the following two hitting times:

• m̃1 = min{m : δ(G(m)) ≥ 1};

• m̃c = min{m : G(m) is connected }.

Since, as noted, whenever G is connected we have that δ(G) ≥ 1, it follows that m̃c ≥ m̃1. We
shall show that with high probability the converse also holds.

Theorem 6.4. In the random graph process
(
G(m) : m ∈

[(
n
2

)])
with high probability m̃c = m̃1.

Proof. Let us consider the following two times in the random graph process:

• m1 = (n−1)
2 (log n− log logn);

• m2 = (n−1)
2 (log n+ log log n).

During the proof we will show that a (finite) number of events hold whp, and we will show
that if all of the events occur, then m̃c = m̃1.

By Lemma 6.1 and Theorem 4.5 with high probability m1 < m̃1 < m2, and we call this
event A1. In other words, whp G(m1) has at least one isolated vertex and G(m2) has no isolted
vertices. Let us write I for the set of isolated vertices in G(m1).

Furthermore, since m1

(n2)
≈ logn

n , it follows from Lemma 6.2 and Theorem 4.5 that with high

probability G(m1) has no connected components of size between 2 and n
2 , and we call this event

A2. In particular, if A2 holds, then there is a unique component of G(m1) which is not an
isolated vertex, which we denote by L.
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We can estimate the number |I| of isolated vertices in G(m1). This will be a little easier to
calculate in G(n, p1) where p1 = m1

(n2)
= logn−log logn

n , and the result will carry over to G(m1) via

Theorem 4.5.

In this case, for an arbitrary v ∈ [n]

P(v is isolated in G(n, p1)) = (1− p1)n−1

≤ e−p1n

1− p1

=
elogn−log logn

1− p1

≤ 2
log n

n
.

Hence the expected number of isolated vertices in G(n, p1) is at most 2 log n. Then, by Markov’s
inequality, with high probability the number of isolated vertices in G(n, p1) is at most (log n)2

and it follows from Theorem 4.5 that the same holds in G(m1). That is, whp |I| ≤ (log n)2, and
we call this event A3.

Now, if A1 holds, then whp as the random graph process evolved from G(m1) to G(m2), for
each of the vertices i ∈ I, we added an edge ei adjacent to that vertex. If A2 holds, then |I| is
small, and we will show that it is unlikely that any of the m2−m1 edges that were added in this
period go between vertices of I. In this case, if A3 holds, then each edge ei must be incident
with a vertex in L (since L covers the vertices in [n] \ I. It will follow that whp at time m̃1,
each of the vertices in I has a neighbour in L, and hence G(m̃1) is connected.

So, there are precisely m2m1 = (n − 1) log log n many edges in G(m2) \ G(m1) and if we
condition on the event A3 then |I| ≤ (log n)2 and by the union bound the probability that one
of these edges lie completely in I is at most

(n− 1) log log n · (log n)4(
n
2

)
−m2

≤ 4n log log n(log n)4

n2
= o(1).

So whp, conditioned on A3, none of the edges in G(m2) \G(m1) lie in I. Let us call this A4.

We have seen that if A1, A2, A3 and A4 occur then m̃1 = m̃c and hence

P(m̃1 = m̃c) ≥ P

(
4⋂
i=1

Ai

)
≥ 1− P

(⋃
Aci

)
≥ 1− P(Ac1) + P(Ac2) + P(Ac3) + P(Ac4 ∩A3)

≥ 1− P(Ac1) + P(Ac2) + P(Ac3) + P(Ac4|A3)

≥ 1− o(1).

6.2 Matching thresholds

Another simple spanning structure, whose appearance in G(n, p) we can consider is that of a
perfect matching. Recall, a matching in a graph G is an independent set of edges, one meeting
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each vertex at most once. A matching is perfect if it meets each vertex if |V (G)| is even, and all
but one vertex if |V (G)| is odd.

Since it is ‘easier’ to find matchings in bipartite graphs (c.f Hall’s theorem), we will start
by considering the bipartite case. That is, we will denote by G(n, n, p) the random bipartite
graph on two partition clases V1 and V2 of size n, where each edge is included independently
with probability p from the set V1 × V2.

We will need to use the following well-known theorem that gives a necessary and sufficient
condition for the existence of a matching.

Theorem 6.5 (Hall’s Marriage Theorem). Let G be a bipartite graph on vertex classes V1 and
V2. Then G has a matching meeting every vertex in V1 if and only if for every subset S ⊆ V1

we have
|S| ≤ |NG(S)|.

Theorem 6.6. Let p = logn+C(n)
n . Then

1. If C(n)→∞ then with high probability G(n, n, p) has a perfect matching;

2. If C(n)→ −∞ then with high probability G(n, n, p) doesn’t have a perfect matching.

Proof. If C(n) → −∞ then, by similar arguments as before, G(n, n, p) will have an isolated
vertex with high probability. Indeed, for v, v′ ∈ V1 the events that d(v) = 0 and d(v′) = 0 are
independent and so that number of vertices of degree 0 in V1 is distributed as Bin(n, q) where
q = P(d(v) = 0) = (1− p)n. Therefore since

E (Bin(n, q)) = n(1− p)n ≥ ne−
pn

1−p = ne−np+O(np2) = ω(1).

it follows from Lemma 5.2 that with high probability there is at least one isolated vertex in V1.

So, suppose that C(n) → ∞. Since containing a perfect matching is an increasing event,
we may assume that C(n) ≤ log n, and so p ≤ 2 logn

n . If G(n, n, p) does not contain a perfect
matching then by Hall’s Theorem there is some subset S ⊆ Vi for i ∈ {1, 2} such that |NG(S)| <
|S|. Let us take such a subset with |S| as small as possible. We note that

1. |S| = |N(S)|+ 1;

2. |S| ≤ dn2 e;

3. Every w ∈ N(S) has at least two neighbours in S.

Indeed, the first is clear, since otherwise we could remove any vertex from S and find a smaller
subset violating the condition. For the second we note that if this is not the case, then we
can replace S with V3−i \N(S) and we would get a smaller set than S which still violates the
condition. Finally, if w ∈ N(S) has only one neighbour x in S then S \ {x} also violates the
condition.

Now, if |S| = 1 then S = {x} is an isolated vertex. However, since C(n) → ∞ we may
assume, again via similar calculations as before, that with high probability there are no isolated
vertices.
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If |S| = 2 then S = {x, y} and x and y are joined only to some common neighbour z. By the
union the bound the probability that such a pair exists is at most

2

(
n

2

)
np2(1− p)2(n−1) = O

(
n3p2e−2pn

)
= n3

(
2 log n

n

)2 1

n2
= o(1).

Let us denote by E the event that there is a minimal such set S of size s at least 3. Since S
is minimal it satisfies conditions 1., 2. and 3. and hence by the union bound

P(E) ≤
dn

2
e∑

s=3

2

(
n

s

)(
n

s− 1

)(
s

2

)s−1

(p2)s−1(1− p)s(n−s+1)

≤
dn

2
e∑

s=3

2
(en
s

)s( en

s− 1

)s−1

s2(s−1)

(
2 log n

n

)2(s−1)

e−
spn
2

≤ 2n

dn
2
e∑

s=3

(2e log n)2(s−1)e−
s logn

2

≤ 2n

dn
2
e∑

s=3

(
(log n)2

√
n

)s
≤ O

(
(log n)6

√
n

)
= o(1).

The first line in the above follows as we have 2
(
n
s

)
potential choices for the set S,

(
n
s−1

)
choices

for NG(S) and then each vertex in N(S) has at least 2 neighbours inside S (by property 3.) and
each vertex in S has no neighbours outside of N(S). The rest is just standard approximations.

Hence with high probability there is no minimal such set S and so with high probability
G(n, n, p) has a perfect matching.

So, what about in the non-bipartite case? One could try and adapt the proof above using
Tutte’s Theorem rather than Hall’s Theorem as a criterion for the existence of a matching, and
a proof along these lines was given by Erdős and Rényi. Instead we will follow a proof of  Luczak
and Ruciński.

The rough idea is as follows - if p ≈ logn
n then p is large enough that whp any two large sets

in G(n, p) are connected by an edge, but on the other hand p is small enough that we don’t
expect small sets to be very dense.

Let us fix some bipartiton A ∪ B of [n]. On average, each vertex in A will have many
neighbours in B, and vice versa. If this were to be true for all vertices, then we could find a
perfect matching using Hall’s condition.

Indeed, if a small subset S ⊆ A violated Hall’s condition, then the set S ∪ N(S) would be
small, but contain many edges since all vertices in S have many neighbours in B, contradicting
our assumptions.

However, if S ⊆ A is large then, since there are no edges between S and B \N(S), B \N(S)
must be small, and a similar argument shows that this cannot happen.
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However, for any bipartiton A ∪ B of [n] there will likely be some bad vertices, with few
neighbours in the other partition class, however these should be relatively rare. Since they are
relatively rare, we will be able to show that whp there is only a small number of such vertices,
and moreover that they are not very close to each other. It will follow that we can greedily
match these vertices to neighbours, and in the remaining graph each vertex will still have many
unmatched neighbours in the opposite partition class, and we can finish the argument as above.
It will turn out that in order to make the above precise, we will have to deal quite carefully with
vertices of very low degree, which we call small.

Let us start then by showing the first property.

Lemma 6.7. Let p = Θ
(

logn
n

)
and let u = n (log logn)2

logn . Then with high probability in G(n, p)

1. There is an edge between every pair of disjoint subsets of vertices of size at least u; and

2. Every set S of vertices of size at most 2u is such that G[S] contains fewer than (log log n)3|S|
many edges.

Proof. Let us suppose that that c1
logn
n ≤ p ≤ c2

logn
n .

For the first property we note that if there are two sets of vertices of size ≥ u with no edges
between them, then there are two sets of size exactly u with no edges between them. Hence if
we let E be the event that the first condition does not hold, a first moment calculation shows
that

P(E) ≤
(
n

u

)2

(1− p)u2

≤
(en
u

)2u
e−pu

2

= (log n)
2n

(log logn)2

logn e
−c1n (log logn)4

logn

= exp

(
2n

(log log n)3

log n
− c1n

(log log n)4

log n

)
≤ exp

(
−Ω

(
n

(log log n)4

log n

))
= o(1)
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Similarly, if we let E ′ be the event that the second condition doesn’t hold, then

P(E ′) ≤
2u∑
s=1

(
n

s

)( (
s
2

)
s(log log n)3

)
p(log logn)3s

≤
∑
s≤2u

(en
s

)s( es2

s(log log n)3

)s(log logn)3

p(log logn)3s

≤
∑
s≤2u

(
c2e

2 log n

(log log n)3

)s(
2eup

(log log n)3

)s((log logn)3−1)

≤
∑
s≤2u

(log n)s
(

2c2e

log logn

)s((log logn)3−1)

≤
∑
s≤2u

es log logn

(
2c2e

log log n

)s log logn

≤
∑
s≤2u

((
2c2e

2

log logn

)log logn
)s

= o(1)

We will see then, if the conclusion of Lemma 6.7 holds and we have two sets A and B of
equal size in G(n, p) where each vertex has many neighbours in the other set, then we can find
a matching covering A ∪B.

Lemma 6.8. Let C > 0 and let H be a bipartite graph on vertex sets A,B ⊆ [n] with |A| = |B|
which satisfies the conclusions of Lemma 6.7 and with minimum degree δ(H) ≥ c log n. Then H
contains a perfect matching.

Proof. Let u = n (log logn)2

logn be as in Lemma 6.7. Let us suppose for a contradiction that H has no
perfect matching, then by Hall’s Theorem there is some subset S ⊆ A such that |NH(S)| < |S|.
We will split into a few cases.

Firstly, if |S| ≤ u, then |S∪NH(S)| < 2u, but the number of edges of G(n, p) in S∪NH(S) is
at least |S|c log n, since H has minimum degree at least c log n. However, c log n� (log log n)3,
and so this contradicts Property 2. of Lemma 6.7.

Secondly, if |NH(S)| ≥ a−u, then consider B\NH(S) := U . Then |U | ≤ u and NH(U) ⊆ A\S
and so |NH(U)| ≤ |A \ S| = a − |S| < a − |NH(S)| = |U |. However then as in the first case
we have that |U ∪ NH(U)| < 2u and the number of edges of G(n, p) in U ∪ NH(U) is at least
|U |c log n, a contradiction.

Hence, we may assume that |S| > u and |NH(S)| < a − u. However then |B \NH(S)| ≥ u,
and there are no edges between S and B \NH(S), contradicting Property 1. of Lemma 6.7.

Using these two lemmas we can complete the proof that the perfect matching threshold
coincides with the connectivity threshold.
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Theorem 6.9. Suppose that n is even and let p = logn+C(n)
n . Then

1. If C(n)→ −∞ then with high probability G(n, p) doesn’t have a perfect matching;

2. If C(n)→∞ then with high probability G(n, p) has a perfect matching.

Proof. The first statement follows from Theorem 6.1, since if C(n) → −∞ then with high
probability there is some isolated vertex, and hence no perfect matching.

So, let us assume that C(n)→∞ and note that, since containing a matching is an increasing
property, we may assume that C(n) = o(log n). Let us fix some arbitrary bipartition [n] = A∪B
where |A| = |B| = n

2 .

We call a vertex v bad if it has fewer than logn
200 neighbours in either A or B. If we let X

denote the number of bad vertices then we see by Lemma 5.2

E(X) ≤ 2P
(

Bin
(n

2
, p
)
<

log n

200

)

≤ 2n exp

−
(
pn
2 −

logn
200

)2

2pn


≤ 2n exp

(
−1

2

(
1

2
− 1

200
+ o(1)

)2

log n

)
≤ 2n1−0.11 ≤ n0.89

and hence by Markov’s inequality

P
(
X ≥ n

9
10

)
= o(1).

Also let us call a vertex small if it has degree at most 20. We will need the following two claims.
The first shows that with high probability the bad and small vertices are far apart in G(n, p).

Claim 6.10. For every fixed k, with high probability G(n, p) does not contain a tree T with k
vertices such that either

• at least two vertices of T are small; or

• at least ten vertices of T are bad.

Proof of claim. If we let Z ∼ Bin(n− k, p), then for any fixed integer z

P(Z ≤ z) ≤ z · P(Z = z) = O

((
n

z

)
pz(1− p)n−z

)
= O

(
(np)ze−np

)
= O

(
(log n)z

n

)
= o

(
n−

2
3

)
.

Hence, by a union bound, the expected number of tree T with k vertices and at least two small
vertices, which we denote by Yk, satisfies

E(Yk) ≤
(
n

k

)
kk−2

(
k

2

)
pk−1P(Z ≤ 19)2 = O

(
nkpk−1n−

4
3

)
= o(1).
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Indeed, if there is such a tree T with two small vertices x and y, all the edges of T must appear
in G(n, p) and at most 19 of the edges from x and y to [n] \ V (T ) can appear in G(n, p).

Simlarly the expected number of trees with at least ten bad vertices, which we denote by Y ′k,
can be seen to satisfy

E(Y ′k) ≤
(
n

k

)
kk−2

(
k

10

)
pk−1P

(
Bin

(n
2
− k + 1, p

)
≤ log n

200

)10

= O
(
nkpk−1n−(0.11×10)

)
= o(1).

The claim then follows as a simple consquence of Markov’s inequality.

The second claim bounds the likely maximum degree of G(n, p).

Claim 6.11. With high probability ∆(G(n, p)) ≤ 8 log n.

Proof of claim. This is a simple application of the Chernoff bounds.

P(∆(G(n, p)) ≥ 8 log n) ≤ nP(Bin(n, p) > 8 log n)

≤ n exp

(
−(8 log n− np)2

2(np+ 8 logn
3 )

)

≤ n exp

(
−(6 log n)2

8 log n

)
≤ n−2 = o(1).

So, we have a whole host of properties that hold with high probability, and so with high
probability the following is true in G(n, p):

• The conclusion of Lemma 6.8 holds with c = 1
300 ;

• Claim 6.10 holds for all k ≤ 21;

• ∆(G(n, p)) ≤ 8 log n;

• δ(G(n, p)) ≥ 1; and

• The number of bad vertices is at most n
9
10 .

Let us order the bad vertices v1, . . . , vX such that d(vi) ≤ d(vi+1). We will match these
vertices greedily to some u1, . . . , ux. Suppose that v1, . . . , vi−1 have already been matched to
u1, . . . , ui−1. and let Vi−1 = {v1, u1, v2, u2, . . . , vi−1, ui−1}.

If vi ∈ Vi−1, then we’ve already matched vi to some vj with j < i. Otherwise we split into
two cases.

Firstly, if d(vi) ≤ 20. We note that vi cannot have any neighbours in Vi−1, since if it did it
would lie at distance ≤ 2 from some vj with j < i. However then d(vj) ≤ 20 as well, and hence
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there is some tree of size at most 3 with two small vertices, a contradiction. So, in this case,
since d(vi) ≥ δ(G(n, p)) ≥ 1, we can match vi arbitrarily to any one of its neighbours ui.

Otherwise, d(vi) ≥ 20. Now, vi cannot have ≥ 18 neighbours in Vi−1, since otherwise it
would be at distance ≤ 2 from at least nine different bad vertices. It is an easy check that there
is then a tree of size at most 19 containing ten bad vertices, a contradiction. Hence vi has at
least one neighbour not in Vi−1 and we match it to this neighbour.

Furthermore, removing VX from the graph can change the degree of each other vertex by at
most 20. Indeed, if v is adjacent to more than 20 vertices in Vx, then it is at distance two from
at least 10 different bad vertices, and again we can form a tree of size at most 21 containing 10
bad vertices.

Since every bad vertex is in Vx, every vertex in G \ Vx has at least logn
200 − 20 neighbours in

both A′ = A\Vx and B′ = B \Vx. We would like to apply Lemma 6.8 to tthe bipartite subgraph
of G(n, p) between A′ and B′, however it is no longer necessarily balanced. Nevertheless, since
all the vertices have large minimum degree into both sides of the bipartition, we might hope to
‘swap’ some vertices from A′ to B′.

Let us suppose, without loss of generality, that |A′| ≥ |B′|. Since |A| = |B|, in order to

balance the bipartition we might need to move as many as |VX | = X ≤ n
9
10 many vertices from

A′ to B′, which could ruin our minimum degree condition. However, suppose we can choose a

set S ⊆ A′ of size |S| = |A′|−|B′|
2 such that for every v1, v2 ∈ S, d(v1, v2) > 2.

Then, for any v ∈ [n]\VX , v is adjacent to at most one vertex in S. Hence, if we consider the
bipartite subgraph of G\VX with partition sets A′ \S and B′∪S we have that |A′ \S| = |B′∪S|
and the degree of each vertex to the other partition class is at least

log n

200
− 20− 1 ≥ log n

300
,

and so by our assumptions and Lemma 6.8, G(n, p) contains a matching between A′ \ S and
B′ ∪ S. Together with the matching on VX , this gives us a complete matching on G(n, p).

It remains then to find such a set S. To do so let us consider an auxilliary graph H where
V (H) = A′ and E(H) = {(u, v) : d(u, v) ≤ 2}. We note that, since ∆(G(n, p)) ≤ 8 log n, it
follows that ∆(H) ≤ 64(log n)2. However it then follows that

α(H) ≥ v(H)

∆(H) + 1
≥

n
2 −X

64(log n)2 + 1
= ω

(
n

9
10

)
.

Hence H contains an independent set S of size |A
′|−|B′|

2 ≤ X ≤ n
9
10 , which is as required.

6.3 Hamiltonicity threshold

So, what might we expect the threshold for containing a Hamiltonian path or cycle to be?
Well, in the case of connectivity an obvious necessary condition was to have no isolated vertices.
Similarly, if G(n, p) has a Hamiltonian cycle then clearly each vertex has degree at least two, and
so the threshold for Hamiltonicity must be at least the threshold for having minimum degree at
least two. Recall that we proved on the example sheet the following:
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Lemma 6.12. Let p = logn+log logn+C(n)
n .

1. If C(n)→∞ then with high probability δ(G(n, p)) ≥ 2;

2. If C(n)→ −∞ then with high probability δ(G(n, p)) ≤ 1.

In particular, if C(n)→ −∞ then with high probability G(n, p) will not contain a Hamilto-
nian cycle. In fact, moreover, the proof shows that if C(n) → −∞ then with high probability
the number of vertices of degree at most one will tend to infinity, and so there cannot even be a
Hamiltonian path. However, again perhaps surprisingly, once we are guaranteed to have degree
at least two everywhere, the graph will with high probability be Hamiltonian.

Theorem 6.13. Let p = logn+log logn+C(n)
n .

1. If C(n)→∞ then with high probability G(n, p) contains a Hamiltonian cycle;

2. If C(n)→ −∞ then with high probability G(n, p) does not contain a Hamiltonian path.

In fact, a similar result as Theorem 6.4 holds; the hitting time for having minimum degree
≥ 2 is exactly the same as the hitting time for containing a Hamiltonian cycle. A key idea in
the proof of Theorem 6.13 will be that of a booster.

We say that a non-edge (u, v) 6∈ E(G) is a booster if its addition increases the length of the
longest path in G (or makes G Hamiltonian). That is, (u, v) is a booster if either G ∪ {(u, v)}
contains a strictly longer path than G, or G ∪ {(u, v)} is Hamiltonian. In particular, if G is
already Hamiltonian, then every non-edge (u, v) 6∈ E(G) is a booster.

Crucially, given any graph G, if we add a sequence of n boosters to G one-by-one (note
that the set of boosters at each step might be different), then the resulting graph must be
Hamiltonian.

Finding boosters will be key to our strategy for building a Hamiltonian cycle in G(n, p), but
how do we find boosters?

Pósa’s rotation-extension technique

Our main tool will comes from an idea of Pósa, which he initially used to show that G
(
n, c logn

n

)
is Hamiltonian for c sufficiently large, and which has been incredibly useful for studying questions
about Hamiltonicity.

We start with the following simple observation: If P = (v0, . . . , v`) is a longest path in a
connected graph G which is not Hamiltonian, then e = (v0, v`) is a booster. Indeed, if P is a
Hamiltonian path, then C = P + e is a Hamiltonian cycle, and hence e is a booster. Otherwise,
there is at least one vertex w ∈ V (G) \ V (C). However, since G is connected there is a path
from w to C in G, let P ′ be a shortest such path. Then, if vi = V (P ′) ∩ V (C), the path

wP ′vivi+1 . . . v`v0v1 . . . vi−1
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in G+ e has length ≥ `+ 1. Hence, the longest path in G+ e is longer than the longest path in
G, and so e is a booster.

So, each longest path in a graph will give us a booster (although many different paths might
have the same endpoints and lead to the same booster). Pósa’s key idea was to find a way to
find many boosters from a single path by rotating it.

More precisely, suppose that P = (v0, . . . , v`) is a longest path in a connected graph G which
is not Hamiltonian. Then, by the above (v`, v0) 6∈ E(G) is a booster. However, each edge
e ∈ E(G) which is adjacent to v` must have its other endpoint in P , since otherwise P +e would
be a longer path. Then, if say e = (v`, vi) with 1 < i < `, we can rotate P at vi by adding e and
deleting (vi, vi+1) to obtain a new longest path P ′ (which has its own booster, (v0, vi+1)). We
call P ′ a rotation of P around vi.

Not only do we find one such path P ′ for each edge adjacent to v`, we can also apply the
same reasoning to P ′ and to find more longest paths and so more boosters.

For the next few lemmas let us fix a longest path P in G and let Q be the set of paths we can
obtain from P by performing an arbitrary sequence of rotations, with v0 fixed. Let us denote
by R the set of endpoints of paths in Q. Furthermore, let us write

R+ = {vi : vi−1 ∈ R} and R− = {vi : vi+1 ∈ R}

and for any subset U ⊆ V (G) let us write N̄(U) for the external neighbourhood of U , that is,

N̄(U) = {w ∈ V (G) \ U : (u,w) ∈ E(G) for some u ∈ U}.

Lemma 6.14. [Pósa] Let G be a connected graph and P , Q, R be as above. Then N̄(R) ⊆
R+ ∪R−.

Proof. We first not that any vertex in N̄(R) must lie in V (P ). Indeed, if v ∈ R then there is
some v0 − v-path Q ∈ Q such that V (P ) = V (Q). However, since P is a longest path in G, so
is Q, and hence each neighbour of v lies in V (Q) = V (P ).

Suppose then that some v ∈ R has a neighbour u ∈ V (P ) and that u 6∈ (R∪R+∪R−). Then,
u ∈ V (P )\R, and so u has two neighbours in each Q ∈ Q. We claim that u in fact has the same
neighbours in each Q. Indeed, suppose that Q is obtained from P via a sequence of rotations
and Q does not contain both edges adjacent to u in P . Then one of the rotations caused one
of these edges to be deleted. However, if an edge (u, x) is deleted in an extension then one of u
or x is the endpoint of the new path, and hence is in R. It follows that either u is in R, u is in
R+ ∪R−, contradicting our assumption.

Consider then the path Q ∈ Q which has v as an endpoint. If u = vi, then by the above, u
is adjacent to vi−1 and vi+1 in Q. Then, since (u, v) ∈ E(G) we can rotate Q around u to get
a new path Q′ ∈ Q in which either vi+1 or vi−1 is an endpoint (note, whilst u is adjacent to
vi−1 and vi+1 on Q, it is not clear what order they appear in, as rotations will reverse segments
of the path). However then either vi+1 or vi−1 ∈ R and so u ∈ R− ∪ R+, contradicting our
assumption.

Corollary 6.15. Let G be a connected graph and P , Q, R be as above. Then |N̄(R)| ≤ 2|R|−1.
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Proof. Clearly |R−| ≤ |R| and also since v` ∈ R it follows that |R+| ≤ |R| − 1.

Hence this set R has bad ’expansion’ properties, its neighbourhood is not too much bigger
than itself. However, as we will show, with high probability all small subsets of G(n, p) will have
good expansion properties, and hence R cannot be too small, and so in particular in G(n, p)
there will be many boosters. Formally the way we will phrase these ‘expansion’ properties will
be to talk about expander graphs.

Given k ∈ N and t > 0 we say a graph G is a (k, t)-expander if |N̄(U)| ≥ t|U | for every set
U ⊆ |V (G)| with |U | ≤ k.

Lemma 6.16. Suppose G is a (k, 2)-expander which is connected and non-Hamiltonian. Then

G has at least (k+1)2

2 boosters.

Proof. Let P = (v0, . . . , v`) be a longest path in G and letQ, R be as above. Since G is connected
and non-hamiltonian, by our observation at the start of this section, (v0, v) is a booster for every
v ∈ R. However, by Corollary 6.15 |N̄(R)| ≤ 2|R| − 1 and hence, since G is (k, 2)-expander,
|R| ≥ k + 1.

Therefore, there is a set Bv0 of at least |R| ≥ k + 1 many boosters, each of the form (v0, v).
However, the path P was an arbitrary longest path in G and hence the same argument applies
to each path Q ∈ Q. In particular, for each v ∈ R there is a path Qv ∈ Q with endpoints v and
v0, and by the same argument applied to Qv, with the roles of v and v0 switched, we see that
there is a set Bv of at least k + 1 many boosters of the form (v, w).

Since each booster (v, w) is contained in at most two such sets, Bv and Bw, by double counting
it follows that the total number of boosters in G is at least

1

2

∑
v∈R
|Bv| ≥

|R|2

2
≥ (k + 1)2

2
.

We will start by showing that, since whp δ(G(n, p)) ≥ 2, it is likely that G(n, p) will be a
(k, 2)-expander for some large k when p is in the range we’re considering.

Why should this be true? Well, as in the proof of Theorem 6.9, in this range of p we should
have that any two large sets in G(n, p) are connected by an edge, and we don’t expect any small
sets to be dense. Furthermore, the minimum degree of G(n, p) should be at least 2, and we
shouldn’t have any low degree vertices close to each other. Also, a similar argument will show
that no vertices of low degree are contained in short cycles.

Then, if U ⊆ [n] is large, then since U is not connected to [n] \ (U ∪ N̄(U)), it will follow
that N̄(U) must also be large.

However, if U is small, then we can split U into two parts US ∪UL where US are the vertices
of low degree. Since δ(G) ≥ 2 and the vertices in US are far apart, N̄(US) ≥ 2|US |. Furthermore,
vertices in UL cannot have many neighbours in US ∪ N̄(US), since the vertices in US are far
apart and not contained in any short cycles.

69



However, since UL is small, but each vertex of UL has large degree and few neighbours in
US ∪ N̄(US), then N̄(UL) \ (US ∪ N̄(US)) is too dense to be small, and so

N̄(U) = N̄(US) ∪ N̄(UL) \ (US ∪ N̄(US))

must be large.

Lemma 6.17. Let p = logn+log logn+C(n)
n where C(n)→∞ then with high probability G(n, p) is

an (n4 , 2)-expander.

Proof. Let us write G = G(n, p) for brevity in what follows, and since being an expander is
an increasing property we may assume that C(n) = o(log log n). We say a vertex is small if

dG(v) ≤ (log n)
7
8 and write

SMALL = {v ∈ [n] : v small}.
We first note that for each v

P(v is small) = P(Bin(n− 1, p) ≤ (log n)
7
8 )

=
∑

k≤(logn)
7
8

P(Bin(n− 1, p) ≤ k)

=
∑

k≤(logn)
7
8

(
n

k

)
pk(1− p)n−1−k

≤
∑

k≤(logn)
7
8

(np)ke−pnep(k+1)

≤ (log n)
7
8 (2 log n)(logn)

7
8 2

n
≤ n−0.9.

A similar calculation will show that for u, v ∈ [n], P(u, v ∈ SMALL) ≤ n−1.8.

Given the similarities between the heuristic for this proof and the proof of Theorem 6.9, it is
reasonable to ask why we cannot use Lemma 6.7 again (and so define our small vertices to have
degree α log n for some small α). However, if we take our threshold for a vertex having small
degree to be of order Θ(log n), we will find that the probability of a vertex being small is always

ω
(
n−

1
2

)
. However, in the next claim it will be necessary that this probability is smaller than

n−
1
2
−ε.

Claim 6.18. With high probability there is no pair u, v ∈ SMALL with d(u, v) ≤ 4 and no
4-cycle containing a vertex u ∈ SMALL.

Proof of claim. For any vertices u, v ∈ [n]

P(d(u, v) ≤ 4) ≤ E(number of u− v-paths of length ≤ 4) ≤
4∑
i=1

ni−1pi = O
(
n3p4

)
≤ n−0.9.

Furthermore, since the property that u, v ∈ SMALL is a decreasing property and the property
that d(u, v) ≤ 4 is an increasing property, it follows from Harris’ inequality that

P(u, v ∈ SMALL and d(u, v) ≤ 4) ≤ P(u, v ∈ SMALL)P(d(u, v) ≤ 4)

≤ n−1.8n−0.9

≤ n−2.7.
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Hence by taking a union bound over all pairs u, v ∈ [n]

P(there exists u, v ∈ SMALL with d(u, v) ≤ 4) ≤ n−0.7.

Similarly, by a union bound the probability that there is a 4-cycle containing a small vertex
is at most (

n

4

)
p4

(logn)
7
8∑

k=0

pk(1− p)n−k−4 ≤ (np)4(log n)
7
8 e−pn ≤ (log n)5

n
= o(1).

Claim 6.19. G contains an edge between every pair of disjoint vertex sets A,B ⊆ [n] with
|A|, |B| ≥ n√

logn
.

Proof of Claim. Note that if such a pair exists, then one exists with |A| = |B| = n√
logn

:= a and

we can estimate the expected number of ‘bad’ pairs A,B as((
n

a

))2

(1− p)−a2 ≤
(
e
√

log n
) 2n√

logn
e−n

≤ e−n+o(n) = o(1),

and so the claim follows from Markov’s inequality.

Claim 6.20. Every subset U ⊆ [n] with |U | ≤ 2n

(logn)
3
8

is such that

e(G[U ]) ≤ 6|U |(log n)
5
8 .

Proof of Claim. Again this follows from a union bound. The probability that such a set U with
|U | ≤ 2n

(logn)
3
8

:= u and e(G[U ]) ≥ 3|U |(log n)
5
8 := r|U | exists is at most

∑
k≤u

(
n

k

)((k
2

)
rk

)
prk

≤
∑
k≤u

(en
k

)k (ek2

rk

)rk (
log n

n

)rk

=
∑
k≤u

(
en

k
· ek
r
· log n

n

)k (ek
r
· log n

n

)k(r−1)

=
∑
k≤u

(
e2(log n)

3
8

)k (e
3

)k(r−1)
.

Using the fact that k log n ≤ u log n ≤ 1
3rn. Hence, the probability is at most

≤
∑
k≤u

exp

(
k

(
2 +

3

8
log logn−Θ(r)

))
= o(1).

Hence, by Lemma 6.12 and Claims 6.18-6.20, with high probability G has the following
properties:
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(a) δ(G) ≥ 2;

(b) There is no pair u, v ∈ SMALL with d(u, v) ≤ 4 and no 4-cycle containing a small vertex;

(c) G contains an edge between every pair of disjoint vertex sets A,B ⊆ [n] with |A|, |B| ≥
n

(logn)
1
2

;

(d) Every subset U ⊆ [n] with |U | ≤ 2n

(logn)
3
8

is such that e(G[U ]) ≤ 6|U |(log n)
5
8 .

We show that from these conditions it follows deterministically that G is an (n4 , 2)-expander.

Supposing then that G satisfies (a)-(d) and let U ⊆ [n] be of size |U | ≤ n
4 . We wish to show

that |N̄(U)| ≥ 2|U |. We split into two cases. Firstly, if |U | ≥ n

(logn)
1
2

then by (c)

|N̄(U)| ≥ n− |U | − n

(log n)
1
2

≥ n

2
≥ 2|U |.

Hence we may assume that U ≤ n

(logn)
1
2

. Let us split U into two parts:

US = U ∩ SMALL and UL = U \ US .

Note that
N̄(U) =

(
N̄(US) \ UL

)
∪
(
N̄(UL) \ (US ∪ N̄(US)

)
.

So, in particular
|N̄(U)| ≥ |N̄(US)| − |UL|+ |N̄(UL) \ (US ∪ N̄(US)|. (6.1)

Since δ(G) ≥ 2 by (a), and by (b) no two vertices of US have common neighbours,

|N̄(US)| ≥ 2|US |. (6.2)

Hence, US expands by a factor of at least two. We will see that UL expands even by a factor
of ω(1), which will be enough to finish the proof. More precisely, we claim that |N̄(UL)| ≥
|UL|(log n)

1
8 .

Indeed, suppose for a contradiction that |N̄(UL)| ≤ |UL|(log n)
1
8 . Then

|UL ∪ N̄(UL)| ≤ (1 + (log n)
1
8 )|U | ≤ n

(log n)
3
8

However, since no vertex in UL is small,

e(G[UL ∪ N̄(UL)]) ≥ 1

2
|UL|(log n)

7
8 ≥ 1

3
|UL ∪N(UL)|(log n)

6
8 ,

contradicting (d).

So, |N̄(UL)| ≥ |UL|(log n)
1
8 is large, and furthermore each u ∈ UL has at most one neighbour

in US ∪ N̄(US) by (b). It follows that

|N̄(UL) \ (US ∪ N̄(US)| ≥ |N̄(UL)| − |UL| ≥ |UL|
(

(log n)
1
8 − 1

)
. (6.3)
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Hence, plugging (6.2) and (6.3) into (6.1),

|N̄(U)| ≥ |N̄(US)| − |UL|+ |N̄(UL) \ (US ∪ N̄(US)|

≥ 2|US |+ |UL|
(

(log n)
1
8 − 2

)
≥ 2(|US |+ |UL|)
= 2|U |.

Using this we can now prove Theorem 6.13.

Proof of Theorem 6.13. As mentioned before, Lemma 6.12 deals with the statement for C(n)→
−∞ so let us assume that C(n)→∞. Furthermore, since containing a Hamiltonian cycle is an
increasing property, we may assume that C(n) = o(log log n).

Our plan will be to expose the edges of G in multiple rounds. In the first round we will
take p1 = p − C′

n for some large, but finite, C ′, so that p2 ≥ C′

n . We will then split the second
round into 2n subrounds each with equal probability q, so that (1 − q)2n = 1 − p2. It follows
that q ≥ p2

2n ≥
C′

2n2 . We will show that in the first round G(n, p1) will be an (n4 , 2)-expander,
and will also be connected. Since G(n, p1) is an expander, it will contain many boosters, and
so with positive probability one such boosters will be contained in a random graph with edge
probability q. However, since being an expander is an increasing property, after adding this edge
this will remain true, and so if we have sufficiently many random graphs with edge probability
q, we expect to be able to add many boosters in a row, and so eventually form a Hamiltonian
cycle.

So, let us make the above sketch precise. Let p1, p2 and q be as above, G1 ∼ G(n, p1) and
let {G2,i : i ≤ 2n} be a sequence of mutually independent random graphs such that each G2,i ∼
G(n, q). By standard coupling arguments we may assume that G(n, p1) ∪

⋃
iG2,i = G(n, p).

Since p1 = p− C′

n = logn+log logn+C(n)−C′
n , by Lemma 6.17, with high probability G(n, p1) is

an (n4 , 2)-expander. In particular, we note that this implies that G(n, p1) is connected.

Indeed, if C is a connected component of G then N̄(C) = ∅ and so |C| > n
4 . However,

if we take some subset C0 ⊆ C of size |C0| = n
4 then the expansion of G(n, p1) implies that

|N̄(C0)| ≥ 2|C0| ≥ n
2 and hence |C| ≥ |C0 ∪ N̄(C0)| ≥ 3n

4 . Hence, every component of G(n, p1)
has size at least n

2 , and so there is only one component.

We will expose the edges in each G2,i one-by-one, referring to the exposure of G2,i as round
i. Let us write Hj = G1 ∪i≤j G2,i.

We say that round i is successful if either

• Hi−1 is Hamiltonian; or

• G2,i contains a booster of Hi−1.
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Note that, if n rounds are succesful then H2n = G(n, p) contains a Hamiltonian cycle.

Let us consider round i. If Hi−1 is Hamiltonian then we are already successful. Otherwise,
since H0 is a connected, (n4 , 2)-expander, so is Hi−1. Hence, by Lemma 6.16, Hi−1 has at least
n2

32 many boosters. It follows that

P(round j is not succesful) ≤ (1− q)
n2

32 ≤ e−
qn2

32 ≤ e−
C′
64 ≤ 1

3
,

for a large enough choice of C ′. Whilst the probability that future rounds are successful are not
necessarily independent, it is clear that the number of successful rounds is at least stochastically
dominated by a Bin

(
2n, 2

3

)
random variable. Hence, if we left X denote the number of successful

rounds then by Lemma 5.2

P(X < n) ≤ P
(

Bin

(
2n,

2

3

)
< n

)
= e−Ω(n) = o(1).
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7 Chromatic Number

7.1 Martingales and the Azuma-Hoeffding inequality

Given a real random variable X and a discrete random variable Z on the same probability space
Ω we write E(X|σ(Z)) for the random variable such that

E(X|σ(Z))(ω) = E(X|Z = Z(ω)).

We can think about this as restricting ourselves to the σ-algebra generated by the sets on which
Z is constant, and replacing the random variable X with it’s average on each of these sets.

Definition. Let Z1, Z2, . . . , Zn and X0, X1, . . . , Xn be sequences of random variables on the
same probability space such that for each i, Xi is determined by {Z1, Z2, . . . , Zi} and

E(Xi |σ(Z1, Z2, . . . , Zi−1)) = Xi−1.

Then (Xi) is called a martingale with respect to (Zi).

We note that this is a rather simplified definition of a martingale, but it will serve for our
purposes. Roughly we can think of a martingale as being a gradual exposure of a random variable
Xn, by revealing more and more information in terms of the random variables Zi. Indeed, it
is easy to check inductively that Xi is E(Xn|σ(Z1, . . . , Zi)), and so each Xi is a finer and fine
approximation of Xn. The converse is also true, which gives us a rich source of martingales.

Lemma 7.1. Let A and (Zi) be random variables on the same probability space. Then Xi =
E(A |σ(Z1, Z2, . . . , Zi)) is a martingale with respect to (Zi).

Proof. Note firstly that each Xi is determined by {Z1, Z2, . . . , Zi}. Also, for all i we have that

E(Xi |σ(Z1, Z2, . . . , Zi−1)) = E(E(A |σ(Z1, Z2, . . . , Zi)) |σ(Z1, Z2, . . . , Zi−1)).

However it is clear that the above expectation is, for given Z1, Z2, . . . , Zi−1, averaging over all
possible values of Zi the expected value of (A|Z1, Z2, . . . , Zi). Hence

E(Xi |σ(Z1, Z2, . . . , Zi−1)) = E(A |σ(Z1, Z2, . . . , Zi−1)) = Xi−1.

There are two very natural examples of martingales on graphs that you can consider, the
edge-exposure martingale and the vertex-exposure martingale.

For the first we order the set [n](2) arbitrarily as e1, e2, . . . , em and define a sequence (Zi)
where Zi is 1ei∈G(n,p), the indicator function of the event that ei ∈ G(n, p). Then for any graph
theoretic function f the random variable f := f(G(n, p)) is a function of the sequence (Zi),
and so as in Lemma 7.1 we can consider the martingale sequence Xi = E(f |σ(Z1, Z2, . . . , Zi)).
We can think of this martingale as revealing the edges of G(n, p) one by one, and the random
variables Xi is the expected value of that f on a random graph G(n, p), which agrees with the
first i− 1 revealed edges. In particular, X0 = E(f) and Xn = f .
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For the vertex exposure martingale we take Z ′i ∈ {0, 1}i−1 to be the vector of indicator
random variables of the event that the edge (i, j) with j < i is in G(n, p). Again for any graph
theoretic function f we can consider the corresponding martingale Xi = E(f |σ(Z ′1, Z

′
2, . . . , Z

′
i)).

Similar to before we can think of this martingale as revealing the vertices (and edges adjacent
to them) of G(n, p) one by one, then Xi is the expected value of f on a random graph G(n, p),
which agrees with the first i exposed vertices. Note that here we have X1 = E(f) in contrast to
the previous example, since exposing the first vertex gives no information, so the length of the
martingale sequence here is really (n− 1).

Our main tool will be the following concentration result for martingales known as Azuma’s
inequality, similar versions of which were proved concurrently by multiple authors including
Azuma, Hoeffding and Steiger.

Theorem 7.2 (The Azuma-Hoeffding Inequality). Let c1, . . . , cn > 0 and let (Xi)
n
0 be a mar-

tingale with respect to (Zi)
n
1 such |Xi −Xi−1| ≤ ci for all 1 ≤ i ≤ n then

P(Xn ≥ X0 + t) ≤ e−
t2

2σ2 and P(Xn ≤ X0 − t) ≤ e−
t2

2σ2

where σ2 =
∑n

i=1 c
2
i .

Often we want to be able to deduce the boundedness condition |Xi −Xi−1| ≤ ci from more
local conditions. That is, since we can think of Xn as being a function f(Z1, Z2, . . . , Zn), then
if changing any single coordinate doesn’t affect the value of X very much, we would expect the
differences to be bounded, since the range of Xi−Xi−1 will depend on how much our expectation
of Xn changes once we learn what Zi is (as long the later Zj are not too dependent on this value).

In the particular case of graphs we say a graph theoretic functions f is c-edge-Lipschitz if
whenever H and H ′ differ in only one edge then |f(H)−f(H ′)| ≤ c. Equivalently, if we consider
f as a function of the variables f(Z1, Z2, . . . , Zm) then we require that changing one coordinate
does not change f by more than c. Similarly it is c-vertex-Lipschitz if whenever H and H ′ differ
at only one vertex |f(H)− f(H ′)| ≤ c.

Lemma 7.3. For any graph theoretic function f , if f is c-edge-Lipschitz then the corresponding
edge exposure martingale satisfies |Xi −Xi−1| ≤ c and similarly if f is c-vertex-Lipschtiz.

Proof. We first note that in both cases the corresponding variables (Zi) are all mutually inde-
pendent. The proof of this lemma involves a clever trick called the duplication trick. For any
i let us consider a random variable Z ′i which has the same distribution as Zi, but is mutually
independent with Z1, . . . , Zn. Then,

Xi−1 = E(f(Z1, . . . , Zi, . . . , Zn) |σ(Z1, Z2, . . . , Zi−1))

= E(f(Z1, . . . , Z
′
i, . . . , Zn) |σ(Z1, Z2, . . . , Zi−1))

= E(f(Z1, . . . , Z
′
i, . . . , Zn) |σ(Z1, Z2, . . . , Zi−1, Zi))

Here we have replaced Zi by Z ′i in the calculation of Xi−1 so that we can condition on Zi.
The reason for this becomes clear when we look at
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|Xi −Xi−1| = |E(f(Z1, . . . , Zi, . . . , Zn) |σ(Z1, Z2, . . . , Zi))− E(f(Z1, . . . , Zi, . . . , Zn) |σ(Z1, Z2, . . . , Zi−1))|
= E(f(Z1, . . . , Zi, . . . , Zn)− f(Z1, . . . , Z

′
i, . . . , Zn) |σ(Z1, Z2, . . . , Zi))|

≤ c

Where the last inequality holds by the Lipschitz condition for any particular event in σ(Z1, Z2, . . . , Zi),
and so holds in the average case.

Combining Lemma 7.3 and Theorem 7.2 for a Lipschitz graph function f (and its associated
martingale) tells us that the difference between Xn and X0, which are f and E(f) respectively, is
quite small. In particular we can often say that a function is quite tightly concentrated around
it’s mean (even when we don’t know what the mean is).

7.2 The Chromatic Number of a Dense Random Graph

We note that the chromatic number of a graph χ(G) is an 1-edge-Lipschitz function: it is a
simple check that if we add or remove an edge from a graph it can change the chromatic number
by at most one. However applying Theorem 7.2 to the edge exposure martingale will not tell us
much. Indeed the Azuma-Hoeffding inequality, applied with ci = 1, tells us that

P(|χ(G(n, p))− E(χ(G(n, p))| ≥ t) ≤ 2e−
t2

2m

where m =
(
n
2

)
= Ω

(
n2
)

is the number of possible edges in G(n, p). So, to have the right hand
side tend to 0 we need t = ω(n). However χ only takes values in [n], so in this case saying that
with high probability χ is within ω(n) of its expectation is not very useful.

However we can instead consider the vertex exposure martingale. Again it is a simple check
that χ is also a 1-vertex-Lipschitz function. In this case combining Lemma 7.3 and Theorem 7.2
gives us a better bound, first due to Shamir and Spencer

Theorem 7.4. For any n and p and for all t ≥ 0

P(|χ(G(n, p))− E(χ(G(n, p))| ≥ t) ≤ 2e
− t2

2(n−1) .

Proof. As noted, χ is a vertex Lipschitz function. So by Lemma 7.3 we can apply Theorem 7.2
to the associated vertex exposure martingale with ci = 1 to conclude that, for all t ≥ 0

P(|χ(G(n, p))− E(χ(G(n, p))| ≥ t) ≤ 2e
− t2

2(n−1) .

Now we can take t = ω(
√
n) to see that χ(G(n, p)) is ‘tightly’ concentrated about its expec-

tation, although we still don’t know what it’s expectation is. This will be a useful bound as long
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at this expectation is larger than
√
n. But what is the expected chromatic number of a random

graph?

One simpler question to consider is the independence number α(G(n, p)) of a random graph.
Then, since any colour class must be an independent set,

χ(G(n, p)) ≥ n

α(G(n, p))
.

Hence, a good upper bound on the independence number would give us a good lower bound on
the chromatic number. It is relatively easy, for fixed p, to see what the independence number
of G(n, p) should be. Note that, since an independent set is a clique in the complement, and
G(n, p)c ∼ G(n, 1− p) this also tells us what the clique number of a dense random graph is.

Theorem 7.5. Let p ∈ (0, 1) be constant and let b = 1
1−p . Then with high probability

α(G(n, p)) = (2 + o(1)) logb n.

Proof. Let Xk be the number of independent sets of size k, and suppose that k = d2 logb ne, so
that (1− p)k ≤ n−2. Then

E(Xk) =

(
n

k

)
(1− p)(

k
2)

≤
(en
k

)k
(1− p)−

k
2 (1− p)

k2

2

=
(en
k

(1− p)−
1
2 (1− p)

k
2

)k
≤
(

e

k
√

1− p

)k
= o(1).

Hence by Markov’s inequality, with high probability there are no independent sets of size k, and
hence no independent sets of size ≥ k.

Suppose then that k = b(2− ε) logb nc for some fixed ε > 0, so that (1− p)k ≥ nε−2. In this
case we have that

E(Xk) =

(
n

k

)
(1− p)(

k
2)

≥
(n
k

)k
(1− p)

k2

2

=
(n
k

(1− p)
k
2

)k
≥

(
n
ε
2

k

)k
= ω(1)

So, we would like to establish the concentration of Xk. The original proof of this fact by
Bollobás used the Azuma-Hoeffding inequality. However, since Xk is not very edge or vertex
Lipschitz, he had to use a little trick and consider instead the size of a maximal family of
‘disjoint’ independent k-sets. This is then a 1-edge-Lipschitz random variable, and it is possible
to show using an alteration trick that its expectation is not much smaller than that of Xk, and
one can then apply the Azuma-Hoeffding inequality that it is non-zero with high probability.
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However, we can save a bit of time by using Janson’s inequality. Technically, in order to apply
Janson’s inequality we should work in the complement and consider the number of k-cliques,
but for ease or presentation we won’t go into quite so much detail.

We want then to calculate the quantity ∆ from Janson’s inequality, which is the sum over
all pairs Yi, Yj of k-sets in [n] which share at least two vertices of the probability that Yi and Yj
are independent sets. Hence

∆ =
k−1∑
j=2

(
n

k

)(
k

j

)(
n− k
k − j

)
(1− p)(

k
2)(1− p)(

k
2)−(j2)

=

(
n

k

)
(1− p)(

k
2)
k−1∑
j=2

(
k

j

)(
n− k
k − j

)
(1− p)(

k
2)−(j2)

and so

∆

E(Xk)2
=

k−1∑
j=2

(
n

k

)−1(k
j

)(
n− k
k − j

)
(1− p)−(j2) :=

k−1∑
j=1

µj

We’d like to show that this is small. Firstly let us show that the first term dominates this
expression. Indeed if j ≥ 2 then

µj+1

µj
=

(
k
j+1

)(
n−k
k−j−1

)
(1− p)−(j+1

2 )(
k
j

)(
n−k
k−j
)
(1− p)−(j2)

=
k − j
j + 1

k − j
n− 2k + j + 1

(1− p)−j

≤ k2

n
(1− p)−j

and so for j ≥ 3

µj
µ2
≤
(
k2

n

)j−2

(1− p)−(j2)+1

≤
(
k2

n
(1− p)−

j(j−1)+2
2(j−2)

)j−2

≤
(
k2

n
(1− p)−

j
2
− 1

2

)j−2

≤
(

k2

n
√

1− p
(1− p)−

k
2

)j−2

≤

(
k2

n

n1− ε
2

√
1− p

)j−2

≤
(

1

2

)j−2

.
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In particular, ∆
E(Xk)2 =

∑k−1
j=1 µj ≤ 2µ2, and so

E(Xk)
2

∆
≥ 1

2µ2

=
1− p

2

(
n

k

)(
k

2

)−1(n− k
k − 2

)−1

≥ 1− p
2

(
n

k

)(
n− 2

k − 2

)−1

k−2

=
1− p

2

n(n− 1)

k3(k − 1)

≥ (1− p)n2

2k4

Hence by Lemma 4.11 we have that

P(Xk = 0) ≤ exp

(
−E(Xk)

2

∆

)
≤ exp

(
−(1− p)n2

2k4

)
= o(1).

Let us note a few things about this proof. Firstly it follows quite easily that with high
probability

χ(G(n, p)) ≥ n

α(G(n, p))
≥ (1 + o(1))

n

2 logb n
.

In particular, the concentration result we get from Theorem 7.4 is effective - we can conclude
that χ(G(n, p)) is whp (1 + o(1))E(χ(G(n, p))), even if we don’t know what this expectation is.

However, as we say see, the bound above is in fact the right order of magnitude. Moreover,
we note that the proof actually gives quite a strong bound on the probability that α(G(n, p)) ≤
(2− ε) logb n, and since we will need it in the following proof we make it explicit now

P (α(G(n, p)) ≤ (2− ε) logb n) ≤ exp

(
−Ω

(
n2

(log n)4

))
= o(2−n). (7.1)

We now have all the ingredients to present the following proof, due to Bollbás

Theorem 7.6. Let p ∈ (0, 1) be constant and let b = 1
1−p . Then with high probability

χ(G(n, p)) = (1 + o(1))
n

2 logb n
.

Proof. The idea of the proof is as follows. If we consider the restriction of G(n, p) to a subset S
of a smaller, but still quite large size, say |S| = k, then this subgraph will look like G(k, p).

We can use Theorem 7.5 to say that almost surely this subgraph will contain an independent
set of size (2 + o(1)) logb k. since this probability is sufficiently large we can conclude the same
holds true for all subsets of that size.
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We can then produce a colouring greedily by picking independent sets of size (2+o(1)) logb k,
which we can do until there are less than k vertices left.

If k can be chosen to be large enough that (2 + o(1)) logb k ∼ (2 + o(1)) logb n, then we will
use about the right amount of colours in this process. Similarly, if k can be chosen to be small

enough that k = o
(

n
logb n

)
, then if we colour the remaining vertices each by a different colour,

it won’t have a large effect on the total number of colours we’ve used.

Let ε > 0 be abitrary and let k = n/(logb (n))2. Note that logb k ≈ logb n and k = o
(

n
logb k

)
.

For any subset S ⊆ [n] of size k, the graph G(n, p)[S] ∼ G(k, p). hence by Theorem 7.5

P (α (G(n, p)[S]) < (2− ε) logb k) = o(2−n).

Since there are at most 2n subsets of G(n, p) of size k, by the union bound

P (α (G(n, p)[S]) < (2− ε) logb k for some k-set S) = o(1).

Hence, with high probability, every set of k vertices contains an independent set of size (2 −
ε) logb k.

We greedily colour G(n, p) by choosing, as long as the set of uncoloured vertices is of size
≥ k, some independent set of size (2− ε) logb k and colouring it with a new colour. Once there
are less than k uncoloured vertices we colour each with a different new colour. Clearly this
produces a proper colouring of G(n, p) and so with high probability

χ(G(n, p)) ≤ n

(2− ε) logb k
+ k

≤ n

(2− 2ε) logb n
+

n

(log (n))2

≤ (1 + 2ε)
n

2 logb n

for small enough ε. Together with the comment after Theorem 7.5 the result follows.

7.3 The Chromatic Number of Sparse Random Graphs

What about for smaller values of p? Since Theorem 7.4 holds for for any p, as long as
E(χ(G(n, p)) = ω(

√
n) it will follow that χ(G(n, p)) is with high probability (1+o(1))E(χ(G(n, p))),

although we might not be able to calculate the precise value of E(χ(G(n, p)). Since we can bound
the chromatic number from below in terms of the independence number, a simple first moment
calculation shows that this will happen as long as p is significantly larger than n−

1
2 .

Lemma 7.7. For any p ∈ (0, 1),

P
(
α(G(n, p)) ≥ 4 log n

p

)
= o

(
n−2

)
.
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Proof. Let k = d4 logn
p e and let Xk be the number of independent sets of size k in G(n, p). Then

P
(
α(G(n, p)) ≥ 4 log n

p

)
≤ E(Xk) =

(
n

k

)
(1− p)(

k
2)

≤
(en
k

)k
e−p

k(k−1)
2

≤
(
ene−

pk
3

)k
≤
(
ene−

4
3

logn
)k

≤
(
en−

1
3

)k
= o(n−2)

Hence, if p ≥ (logn)2
√
n

then

E(χ(G(n, p))) ≥ P
(
α(G(n, p)) ≤ 4

√
n

log n

)
E
(
χ(G(n, p)) | α(G(n, p)) ≤ 4

√
n

log n

)
≥ P

(
α(G(n, p)) ≤ 4

log n

p

)
E
(
χ(G(n, p)) | α(G(n, p)) ≤ 4

√
n

log n

)
≥ (1 + o(1))

√
n log n

4
= ω

(√
(n− 1) log n

)
and by Theorem 7.4

P
(
|χ(G(n, p)− E(χ(G(n, p))| ≥

√
(n− 1) log n

)
≤ n−

1
2 .

Hence, for this range of p as well χ(G(n, p) = (1 + o(1))E(χ(G(n, p)). How about for smaller p?
It turns out that this sort of concentration will hold as long as p is sufficiently larger than 1

n .

Theorem 7.8. Suppose that p ≥ n−α for some α < 1. Then there exists some function h(n)
such that with high probability χ(G(n, p)) = (1 + o(1))h(n).

Proof. By Lemma 7.7 we may assume that p ≤ (logn)2
√
n

. Let h(n) be the smallest integer such

that

P(χ(G(n, p)) ≤ h) ≥ 1

log n
,

so that P(χ(G(n, p)) < h) < 1
logn . Note that, by Lemma 7.7 we know that

P
(
α(G(n, p)) ≥ 4

log n

p

)
≤ o(n−2) = o

(
1

log n

)
and so

P
(
χ(G(n, p)) ≤ pn

4 log n

)
≤ P

(
α(G(n, p)) ≥ 4

log n

p

)
= o

(
1

log n

)
and so h(n) ≥ pn

4 logn ≥
n1−α

4 logn .

Let us also define a graph function f where f(G) is the smallest integer k such that there
exists a subset S ⊆ V (G) of size k with χ(G \ S) ≤ h.

82



We note that f is a 1-vertex-Lipschitz function. So let us consider the corresponding vertex
exposure martingale E(f) = X1, X2, . . . , Xn = f(G(n, p)). The Azuma-Hoeffding inequality
tells us that

P(χ(G(n, p)) ≤ h) = P(Xn = 0) ≤ P(|Xn −X1| ≤ E(Xn)) ≤ 2e
− (E(Xn))2

2(n−1) .

However, since P(χ(G(n, p)) ≤ h) ≥ 1
logn by assumption, it follows that E(Xn) ≤

√
n log n.

Then, applying Azuma-Hoeffding again we see that

P(f(G(n, p)) > 2
√
n log n) ≤ P(|Xn −X1| ≥

√
n log n) ≤ n−

1
2 .

To put this into words, with high probability G(n, p) will contain a subset S of size at most
2
√
n log n such that G(n, p) \ S can be h-coloured.

Claim 7.9. If p ≤ (logn)2
√
n

then with high probability every subset A ⊆ [n] of size |A| ≤ 2
√
n log n

has e(G(n, p)[A]) ≤ |A|(log n)3.

Proof of claim. If we let X be the number of subsets A which don’t satisfy the conclusion of the
claim then

E(X) =
∑

k≤2
√
n logn

(
n

k

)( (
k
2

)
k(log n)3

)
pk(logn)3

≤
∑

k≤2
√
n logn

(
n

1
(logn)3

ek2

k(log n)3

(log n)2

√
n

)k(logn)3

≤
∑

k≤2
√
n logn

(
e

1
(logn)2

ek√
n log n

)k(logn)3

≤
∑

k≤2
√
n logn

(
2e2
√
n log n√

n log n

)k(logn)3

≤
∑

k≤2
√
n logn

(
2e2

√
log n

)k(logn)3

= o(1)

We say a graph H is r-degenerate if there is an ordering of the vertices V (H) = {v1, . . . , vm}
such that |{j : j < i and (vi, vj) ∈ E(H)}| ≤ r for all i ≤ m. Note that an r-degenerate graph
can easily be r + 1 coloured by greedily colouring the graph starting from v1 to vm.

We note that Claim 7.9 implies that with high probability every set A of size 2
√
n log n is

such that G(n, p)[A] is 2(log n)3-degenerate. Indeed, if such an A were not, then there must
exist a subset A′ ⊆ A with δ(G(n, p)[A′]) > 2(log n)3, as otherwise we could pick our ordering
greedily. However then |A′| ≤ |A| and

e(G(n, p)[A′]) ≥ |A′|2(log n)3

2
≥ |A′|(log n)3
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contradicting Claim 7.9. In particular, the induced subgraph of G(n, p) on S has chromatic
number at most 2(log n)3 + 1.

So, to recap, with high probability there is a subset S ⊆ G(n, p) such that χ(G(n, p)\S) ≤ h
and χ(G(n, p)[S]) ≤ 2(log n)3 + 1. Hence with high probability, by colouring these two sets with
disjoint sets of colours

χ(G(n, p)) ≤ h(n) + 2(log n)3 + 1 = (1 + o(1))h(n)

since h(n) ≥ n1−α

4 logn = ω
(
(log n)3

)
. However, by assumption

P(χ(G(n, p)) < h) <
1

log n
= o(1)

and so with high probability χ(G(n, p)) = (1 + o(1))h(n).

In fact, rather remarkably, for small enough values of p with high probability χ(G(n, p)) takes
at most two values!

Theorem 7.10. Let α > 5
6 . If p(n) ≤ n−α, then there exists a function h(n) such that with

high probability h(n) ≤ χ(G(n, p)) ≤ h(n) + 1.

Proof. The idea of the proof is relatively simple. In the previous proof we showed that, for an
appropriate choice of h := h(n), with high probability there is a set S of at most 2

√
n log n

vertices such that G(n, p) \ S can be h-coloured, and with high probability χ(G(n, p)) ≥ h.
Furthermore we showed that this set S was 2(log n)3-degenerate, and hence we could colour this
remainder with at most 2(log n)3 more colours.

In fact, for small enough p, the conclusion of Claim 7.9 will hold for even a constant degener-
acy, in fact degeneracy two. This will follow from the following fact, that no small subsets have
average degree more than 3− 2δ, where δ = α− 5

6 > 0.

Claim 7.11. If p ≤ n−α then with high probability every subset A ⊆ [n] of size |A| ≤ 4
δ

√
n log n

has e(G(n, p)[A]) ≤ (3
2 − δ)|A|.

Proof of claim. Let us assume first that α ≤ 1. If we let X be the number of subsets A which
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don’t satisfy the conclusion of the claim then

E(X) =
∑

k≤ 4
δ

√
n logn

(
n

k

)( (
k
2

)
(3

2 − δ)k

)
p( 3

2
−δ)

≤
∑

k≤ 4
δ

√
n logn

en
k

(
ek2

(3
2 − δ)k

)( 3
2
−δ)

p( 3
2
−δ)

k

≤ O

 ∑
k≤ 4

δ

√
n logn

(
k

1
2
−δn1−( 3

2
−δ)α

)k
≤ O

 ∑
k≤ 4

δ

√
n logn

(
n

5
4
− 3

2
α− 1

2
δ+δα(log n)

1
4

)k
≤ O

 ∑
k≤ 4

δ

√
n logn

(
n

3
2

( 5
6
−α)− 1

2
δ+δα(log n)

1
4

)k
≤ O

 ∑
k≤ 4

δ

√
n logn

(
n−

3
2
δ− 1

2
δ+δ(log n)

1
4

)k
≤ O

 ∑
k≤ 4

δ

√
n logn

(
n−δ(log n)

1
4

)k
= o(1)

So, already we can use the same strategy as before to show that with high proability

h(n) ≤ χ(G(n, p)) ≤ h(n) + 3.

However, by being a bit more careful we can bring this 3 down even further.

With high probability there exists an S as in Theorem 7.8, that is, |S| ≤ 2
√
n log n and

χ(G(n, p) \ S) ≤ h, where h := h(n) be the smallest integer such that

P(χ(G(n, p)) ≤ h) ≥ 1

log n
.

If N(S), the exclusive neighbourhood, were independent then we could use it as a ’buffer’ of
sorts: We colour G(n, p) \ (S ∪N(S) using the colours {1, 2, . . . , h}, and then use a new colour
h+ 1 to colour N(S). Then, S is 2-degenerate, and so can be three coloured, however since all
of S’s neighbours are coloured h+ 1, we can just use the colours {1, 2, 3} to colour S as before,
and not cause any problems with the previous colouring.

So what if N(S) is not independent? Well, then we can find an edge (u, v) with u, v ∈ N(S).
But then S′ = S∪{u, v} has two more vertices, but three more edges than S. Since by assumption
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2e(S)
|S| < 3 we have that

2e(S′)

|S′|
=

2e(S) + 6

|S|+ 2
>

2e(S)

|S|
,

and so the average degree of S′ is larger than that of S. So, let us define a sequence of subsets
S = S0, S1, . . . , St where, if Si has already been defined then either N(Si) is not independent,
in which case we find u, v ∈ N(Si) with (u, v) ∈ E(G(n, p)) and set Si+1 = Si ∪ {u, v}, or N(Si)
is independent and we let Si+1 = Si. Suppose we run this process for t = (2

δ − 1)
√
n log n steps,

then if N(St) is not independent we have that

|St| = |S|+ 2t and e(St) ≥ e(S) + 3t ≥ 3t

Hence |St| ≤ 2
√
n log n+ (4

δ − 2)
√
n log n ≤ 4

δ

√
n log n and so

2e(St)

|St|
≥ 6t

4
δ

√
n log n

≥
12
δ − 6

4
δ

=
12− 6δ

4
= 3− 3

2
δ > 3− 2δ,

contradicting Claim 7.11. It follows that N(St) is independent and hence, with high probability
G(n, p) contains some set St such that |St| ≤ 4

δ

√
n log n, N(St) is independent and χ(G(n, p) \

St) ≤ h.

It follows that there is a h-colouring of G(n, p) \ (St ∪N(St). Furthmore, by Claim 7.11 whp
St is 2-degenerate, and so can be three coloured using the colours {1, 2, 3}. Finally we can give
the set N(St) the colour h+ 1. As long as h ≥ 3, this determines a proper colouring of G(n, p)
and so with high probability h(n) ≤ χ(G(n, p)) ≤ h(n) + 1.

But what if h ≤ 3? This is sort of a silly case, and note that even if h ≤ 3 we can still use
the above ideas to show that with high probability h ≤ χ(G(n, p)) ≤ h+ 3. However, with a bit
of care we can deal with this case as well.

Firstly, when p = o(n−1), by Theorem 5.1 with high probability G(n, p) is a forest and so
χ(G(n, p)) ≤ 2.

Also if p = c
n for c = 1 + ε sufficiently close to one, then it’s not too hard to show, via

similar calculations as Claim 7.11, that with high probability every set of size at most ≈ 2εn has
minimum degree at most two. However, since any subgraph with minimum degree at least three
is a subgraph of the giant component, and the giant component has at most ≈ 2εn vertices, it
follows that G(n, p) has no subgraph of minimum degree at least three, and hence can be three
coloured greedily.

So, all we really need to show if that, if p ≥ (1.001)/n say then χ(G(n, p)) ≥ 3, or in
other words, G contains an odd cycle, with probability at least 1 − 1

logn . We leave this as an
exercise.
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8 Random Regular Graphs

Suppose we want to consider the properties of a random r-regular graph G(n, r), for some fixed
r, that is, a graph picked unfiformly from the set of all r-regular graphs on n vertices. For
very small values of r, 0, 1 or 2, we can say quite explicitly what such graphs look like, and
so reasonably easily talk about the distribution of G(n, r). For example, a random 1-regular
graph is just a random matching, which will only exist when n is even, and can be generated by
sequentially matching pairs of unmatched vertices uniformly at random.

However for larger values of r we have no easy description of the class of r-regular graphs,
and so we don’t know how to efficiently sample or generate a random r-regular graphs.

Of course, we could look at G(n, p) for an appropriate choice of p and condition on the event
that G is r-regular, but even for the ‘best’ choice of p = r

n−1 the probability that G(n, p) is
r-regular will be exponentially small, and furthermore, we have little control over how the edge
probabilities interact.

In this section will describe a very useful model for generating random graphs with a fixed
degree sequence, that in particular will allow us to talk about properties of G(n, r).

8.1 The Configuration Model

Suppose we have a sequence d = (d1, . . . , dn) ∈ Nn such that
∑

i di is even. Let us denote by
G(n, d) the random variable which is uniformly distributed on the set Gn,d of graphs with degree

sequence d. We will assume that di ≥ 1 for each i.

If we have a graph with degree sequence d then we could imagine drawing di unfinished
‘half-edges’ from each vertex i ∈ [n]. Locally around each vertex we know that this is what the
graph looks like, but we don’t know where we will end up if we follow a particular edge from
i. One way to build a graph with degree sequence d would be to match up the ends of these
half edges in a uniformly random manner (you could think of this as happening sequentially,
one by one, or done all at once by picking a random matching of the half-edges). Due to the
inherent symmetry of this process, we might hope that this process shouldn’t be biased towards
any particular graph Gn,d , or in other words, that this produces a uniformly distributed graph
in Gn,d. As we shall see, this will almost be the case.

So, let us make the process we descrived about more explicit. We take a collection of disjoint
sets {Wi : i ∈ [n]}, which we call cells, such that |Wi| = di for each i and let W =

⋃
iWi. Let

φ : W → [n] be the function which maps a point x ∈Wi to φ(x) = i.

Now,
∑

i di = 2m is even, and so there are many ways to partition W into a set F of m pairs,
which we call a configuration. Given any configuration F we can build a multi-graph γ(F ) on
[n] by taking edges (φ(x), φ(y)) for each pair (x, y) ∈ F . Note that γ(F ) may have loops or
parallel edges. In this way we get a map γ : Ω → G∗

n,d
to the set of multi-graphs with degree

sequence d.
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If we let Ω be the set of all configurations of W then we can count

|Ω| = (2m)!

m!2m
.

Indeed, we can build a configuration from a permutation of W by just taking the consecutive
pairs, and if we fix a configuration F we can see that the number of permutations which give
rise to F is exactly 2mm!.

Lemma 8.1. If G ∈ Gn,d, then |γ−1(G)| =
∏n
i=1 di!.

Proof. Let us arrange the edges ofG in some fixed order E(G) = {(i1, i2), (i3, i4), . . . , (i2m−1, i2m)}.
If F is a configuration such that γ(F ) = G, each edge (ij , ij+1) corresponds to a pair (x, y) ∈ F
where φ(x) = ij and φ(y) = ij+1. Hence, we can generate each such configuration F by going
through the ij in order and choosing the corresponding element x ∈ Wij . Since for each Wi

there are di many ij = i, there are di! many different ways to assign the elements of Wi and
hence

∏n
i=1 di! many configurations altogether.

As a simple corollary, if F is uniformly chosen from Ω then γ(F ) is equally likely to be any
particular graph in Gn,d.

Corollary 8.2. Let F be uniformly distributed on Ω and let G1, G2 ∈ Gn,d, then

P(γ(F ) = G1) = P(γ(F ) = G2).

However, if G is not simple, then the procedure in Lemma 8.1 will overcount the number of
configurations leading to G, and we can see that the configuration model is less likely to produce
multi-graphs with many loops or parallel edges. In particular, one can show that γ(F ) is not
uniformly distributed on G∗

n,d
. However, if we want to sample uniformly from G(n, d), we can

sample from γ(F ) and accept it only if the graph we get is simple. By Corollary 8.2, conditioned
on γ(F ) being simple, it is equally likely to be any graph in Gn,d. However, this is only really
useful if γ(F ) is quite likely to be simple, but we will see that this is in fact the case for ‘simple’
d.

It will be useful to imagine that we can generate F in the following algorithmic manner: We
choose our partition by sequentially choosing an arbitrary x from the unpaired points in W and
then choosing y uniformly at random from the remaining unpaired points. It is clear that if we
generate a configuration in this manner then it is uniformly distributed. Note that it doesn’t
matter if the xs are chosen randomly or according to some pre-determined procedure (which
might depend on that choices of y). This will be useful, allowing us some control over the order
in which we choose the elements x.

From the above it is clear that if we have a set X = {f1, . . . fk} of k disjoint pairs of points
in W then

P(fi ∈ F |f1 . . . , fi−1 ∈ F ) =
1

2m− 2i+ 1

and so

P(X ⊆ F ) =
1

(2m− 1)(2m− 3) . . . (2m− 2k + 1)
≤ 1

(2m− 2k)k
. (8.1)

Let us define λ =
∑
i di(di−1)
2
∑
i di

we will show the following:

88



Theorem 8.3. Suppose ∆ = maxi{di} ≤ nα where α < 1
6 , then

P(γ(F ) is simple) = (1 + o(1))e−λ(λ+1)

In order to prove the theorem we will need to first show a number of simple lemmas about
γ(F ).

Lemma 8.4. Suppose ∆ = maxi{di} ≤ nα where α < 1
6 . Then with high probability γ(F ) has

(a) No double loops;

(b) At most ∆ log n loops;

(c) No triple edges;

(d) No adjacent double edges;

(e) At most ∆2 log n double edges;

Proof. For (a) we have by (8.1) that

P(F contains a double loop) ≤
n∑
i=1

3

(
di
4

)(
1

2m− 4

)2

≤ ∆3

(2m− 4)2

n∑
i=1

di

≤ ∆3m

(2m− 4)2
= o(1)

For (b) we have, with k = ∆ log n,

P(F contains ≥ k loops) ≤ P(F contains a double loop) +
∑

x1+x2+...+xn=k
xi=0,1

n∏
i=1

((
di
2

)
1

2m− 2k

)xi

≤
(

∆

2m

)k ∑
x1+x2+...+xn=k

xi=0,1

n∏
i=1

dxii + o(1)

≤
(

∆

2m

)k (
∑

i di)
k

k!
+ o(1)

≤
(

∆e

k

)k
+ o(1) = o(1)

where the xi counts whether or not there is a loop at the vertex i.

For (c) we have

P(F contains a triple edge) ≤
∑
i,j≤n

6

(
di
3

)(
dj
3

)(
1

2m− 6

)3

≤ ∆5m2

(2m− 6)3
= o(1)
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For (d) we have

P(F contains two adjacent double edges) ≤
∑

i,j,k≤n
24

(
di
4

)(
dj
2

)(
dk
2

)(
1

2m− 8

)4

≤ ∆5m3

(2m− 8)4
= o(1)

For (e) we have with k = ∆2 log n

P(F has ≥ k double edges) ≤ P(F contains a triple edge) + P(F contains two adjacent double edges)

+
∑

x1+x2+...+xn=k
xi=0,1

n∏
i=1

((
di
2

)
∆

2m− 2k1

)xi

≤
(

∆2

m

)k ∑
x1+x2+...+xn=k

xi=0,1

n∏
i=1

dxii + o(1)

≤
(

2∆2e

k

)k
+ o(1) = o(1).

Indeed, if F has no triple edges or adjacent parallel edges, then we can bound the probability
that F has at least k double edges by the probability that at least k of the vertices i are incident
to a pair of double edges. For a fixed i, this will happen only if one of the

(
di
2

)
pairs x1, x2 in

Wi are paired to points in the same Wj .

8.2 The Switching Lemma

The idea behind the proof of Theorem 8.3 will be to try and move from multigraphs with loops
and parallel edges towards simple graphs via reversible local changes, reducing the number of
loops or parallel edges. Our hope will be that by counting how many ways we can move from a
‘less simple’ graph to a ‘more simple’ graph and vice versa, we can estimate quite precisely how
the number of possible multigraphs with a fixed degree sequence changes when we reduce the
number of parallel edges or loops, and so estimate the proportion which have none of either.

So, let us define Ωi,j to be the set of all configurations F ∈ Ω such that γ(F ) has i loops and
j pairs of parallel edges and furthermore satisfy (a),(c) and (d) from Lemma 8.4.

Lemma 8.5. [Switching Lemma] Suppose that ∆ ≤ nα where α < 1
6 . Let λ =

∑
i di(di−1)
2
∑
i di

. Then

for any i ≤ ∆ log n and j ≤ ∆2 log n,

|Ωi−1,j |
|Ωi,j |

=

(
1 + Õ

(
∆3

n

))
i

λ
,

and
|Ω0,j−1|
|Ω0,j |

=

(
1 + Õ

(
∆4

n

))
j

λ2
,

where Õ hides a polylogarithmic factor in n.
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Before we prove the lemma, let us show that Theorem 8.3 follows quickly from this.

Proof of Theorem 8.3. By Lemma 8.4 we have that

|Ω| = (1 + o(1))
∑

i≤∆ logn

∑
j≤∆2 logn

|Ωi,j |.

Then, by repeated application of Lemma 8.5, for any i ≤ ∆ log n and j ≤ ∆2 log n,

|Ωi,j | =
(

1 + Õ

(
∆3

n

))i
|Ω0,j |

λi

i!

=

(
1 + Õ

(
∆4

n

))(
1 + Õ

(
∆4

n

))2j

|Ω0,0|
λi

i!

λ2j

j!

=

(
1 + Õ

(
∆6

n

))
|Ω0,0|

λi+2j

i!j!

Hence

|Ω| = (1 + o (1)) |Ω0,0|
∑

i≤∆ logn

∑
j≤∆2 logn

λi+2j

i!j!

= (1 + o (1)) |Ω0,0|eλ(λ+1)

In order to prove the switching lemma we will introduce two operations on configurations,
one called an `-switch, which will remove loops, and one called a d-switch, which will remove
double edges.

For the first type of switch we take six points x1, x2, x3, x4, x5, x6 in a configuration F such
that

• {x1, x6}, {x2, x3} and {x4, x5} ∈ F ;

• {x2, x3} is a loop.

To perform an `-switch we replace F by

F ′ = F \ {{x1, x6}, {x2, x3}, {x4, x5}} ∪ {{x1, x2}, {x3, x4}, {x5, x6}} .

Let us consider a directed graph H on Ω whose arcs are pairs (F, F ′) such that F ′ can be
obatined from F by performing an `-switch. We would like to consider the bipartite subgraph
H ′ of this consisting of the edges directed from Ωi,j to Ωi−1,j .

Note that, for any F ∈ Ωi,j there are at most 2i|W |2 = 8im2 `-switches that transform F
to some F ′. Indeed, in order to determine an ` switch we have to choose one of the i loops in
F (and a labelling of the loop), and then we have at most |W |2 choices for x1 and x4 (which
determine x6 and x5 respectively).
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On the other hand, letting M :=
∑

i di(di − 1), for an arbitrary F ′ ∈ Ω there are at most
M |W | = 2mM configurations F such that some `-switch on F results in F ′. Indeed, the pair
{x2, x3} has to lie in the same Wi, and so there are at most M choices for this pair, and then
at most |W | further choices for x5. However, once we have fixed x2, x3 and x5 the other points
are determined.

Hence we know that in H the outdegree of any F ∈ Ωi,j is at most 8im2 and the indegree
of any F ′ ∈ Ωi−1,j is at most 2mM , and hence the same bounds hold in H ′. We would like to
show that these are not too far from the actual in/out degrees.

Lemma 8.6. Let H ′ be a directed bipartite graph on vertex set (Ωi,j ,Ωi−1,j) with an edge from
F ∈ Ωi,j to F ′ ∈ Ωi−1,j if there is an `-switch transforming F to F ′. Then, for i ≤ ∆ log n and
j ≤ ∆2 log n,

(I) For all F ∈ Ωi,j, d
+
H′(F ) =

(
1 + Õ

(
∆2

m

))
8im2;

(II) For all F ′ ∈ Ωi−1,j, d
−
H′(F

′) =
(

1 + Õ
(

∆3

M

))
2mM .

Proof. By the remark before the lemma, it suffices to give lower bounds. Let us first consider
(I).

We are interested in when an `-switch applied to F ∈ Ωi,j produces an F ′ ∈ Ωi−1,j . For such
a thing to happen we need that F ′ has i− 1 loops, j parallel edges, and satisfies (a),(c) and (d)
from Lemma 8.4.

We note that this will definitely hold as long as

• {x1, x6} and {x4, x5} are neither a loop nor a parallel edge in F ;

• None of {x1, x2}, {x3, x4}, {x5, x6} are a loop or a parallel edge in F ′.

So, let us count the sextuples {x1, . . . , x6} for which at least one of these conditions fails to hold.

We first note that there are at most O(im∆) tuples such that one of {x1, x4, x5, x6} lies in the
same cell as {x2, x3}. Indeed, after choosing the loop {x2, x3} in ≤ 2i ways, there are at most
2∆m choices for {x1, x4} such that one of {x1, x4, x5, x6} lies in the same cell Wi as {x2, x3}. In
what follows we will assume that we exclude these tuples.

Since there are i loops and j parallel edges in F , the number such tuples where {x1, x6} or
{x4, x5} forms a loop or a parallel edge in F is at most 16i(∆ + ∆2)(log n)m, since we have 2i
choices for the loop {x2, x3} and then at most 2i + 2j ≤ 2(∆ + ∆2) log n choices for the pair
forming a loop or a parallel edge and at most 2m choices for the other pair. Hence there are at
most Õ(im∆2) many such bad tuples.

The number of such tuples where {x1, x2} or {x3, x4} form a loop in F ′ is at most 8i∆m.
Indeed, after choosing the loop {x2, x3} there are at most ∆ many choices for x1 which forms a
loop with x2 and then at most |W | = 2m choices for x4. A similar bound holds if {x3, x4} forms
a loop. Hence there are at most O(im∆) many such bad tuples.
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The number of such tuples where {x1, x2} or {x3, x4} form a parallel edge in F ′ is at most
8i∆2m. Indeed, given {x2, x3}, since none of {x1, x4, x5, x6} lies in the same cell Wi, there are
at most ∆2 choices for x1 such that {x1, x2} forms a parallel edge. Indeed, since {x1, x4, x5, x6}
do not lie in Wi, as long as x1 is not chosen from the same cell as the neighbour (in F , and so
also in F ′) of one of the ≤ ∆ many xs in Wi, then {x1, x2} will not form a parallel edge. After
choosing x1 we then have at most |W | many choices for x4. A similar argument holds for x4.
Hence there are at most O(im∆2) many such bad tuples.

The number of such tuples where {x5, x6} forms a loop in F ′ is at most 4i∆m. Indeed, after
choosing the loop {x2, x3} and the edge {x1, x6} in F there are at most ∆ many choices for x5

which lies in the same Wi as x6. Hence there are at most O(im∆) many such bad tuples.

The number of such tuples where {x5, x6} forms a parallel edge in F ′ is at most 4i∆2m.
Indeed, given {x2, x3} and {x1, x6}, where we can assume that none of {x1, x2, x3} lie in the
same cell as x6, there are at most ∆ many choices for x5 so that {x5, x6} forms a parallel edge
in F ′. Indeed, there are at most ∆ many xs in the same Wi as x6, and if we choose an x5 which
is not in the same cell as the neighbour of any of these points in F (and so also in F ′), then
{x5, x6} will not form a parallel edge in F ′. Hence there are at most O(im∆2) many such bad
tuples.

Hence the total number of bad tuples is Õ(im∆2) = Õ
(

∆2

m

)
8im2.

So, let us move onto (II). For every F ′ ∈ Ωi−1,j and all x1, . . . , x6 ∈W such that φ(x2) = φ(x3)
and {x1, x2}, {x3, x4}, {x5, x6} ∈ F ′ there is a unique F ∈ Ω such that an `-switch applied to
x1, . . . , x6 transforms F to F ′. This F will have i loops, j parallel edges and satisfy (a),(c) and
(d) from Lemma 8.4 as long as

• None of {x1, x2}, {x3, x4}, {x5, x6} are loops or parallel edges in F ′;

• Neither {x1, x6} nor {x4, x5} becomes a loop or parallel edge in F ;

• Wφ(x2) doesn’t contain a loop in F ′.

So, let us count the sextuples {x1, . . . , x6} for which at least one of these conditions fails to hold.

Since there are i− 1 loops and j parallel edges in F ′, the number such tuples where {x1, x2}
or {x3, x4} forms a loop or a parallel edge in F ′ is at most 8(i + j − 1)∆m, since we have
2(i+ j − 1) choices for the one forming a loop or parallel edge, then at most ∆ choices for the
element of {x2, x3} not yet chosen, since φ(x2) = φ(x2), which determines its partner in F ′, and
finally at most 2m choices for the remaining pair. Hence there are at most Õ(∆3m) many such
bad tuples.

The number of such tuples where {x5, x6} is a loop or parallel edge in F ′ is at most 4(i +
j − 1)∆m. Indeed, There are at most 2(i+ j − 1) choices for x5 and x6, and then at most 2m∆
choices for x2 and x3, which then determines x1 and x4. Hence there are at most Õ(∆3m) many
such bad tuples.

The number of such tuples where {x1, x6} becomes a loop in F is at most 2m∆2. Indeed,
there are at most 2m choices for x5, x6, and then at most ∆ choices for x1, which determines x2,
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and hence at most ∆ choices for x3, which determines x4. A similar calculation holds if {x4, x5}
becomes a loop in F . Hence there are at most O(∆2m) many such bad tuples.

The number of such tuples where {x1, x6} becomes a parallel edge in F is at most 3m∆3.
Indeed, we first note that there are at most O(m∆2) tuples such that one of x1, x4 lies in the
same cell as x5 or x6. Assuming that this doesn’t hold, once we’ve chosen x5 and x6, as long
as we don’t choose x1 from the same cell as the neighbour of some vertex in the same cell as
x6, then {x1, x6} will not form a parallel edge in F ′ (using the fact that {x2, x3} is a loop, and
so cannot be a parallel edge). Hence, there are at most ∆2 bad choices for x1. After we’ve
chosen x1, this fixes x2 and there is at most ∆ choices for x3, which determines x4. A similar
calculation holds if {x4, x5} becomes a parallel edge in F . Hence there are at most O(∆3m)
many such bad tuples.

Finally, the number of such tuples where Wφ(x2) contains a loop in F ′ is at most 2i∆2m.
Indeed, there are at most i choices for the cell φ(x2), and then at most ∆2 choices for x2 and x3,
which then determines x1 and x4. Finally there are at most 2m choices for x5 and x6. Hence
there are at most Õ(∆3m) many such bad tuples.

Hence the total number of bad tuples is Õ(∆3m) = Õ
(

∆3

M

)
2mM .

The first part of Lemma 8.5 now follows by double counting the edges of H ′. Indeed, on the
one hand

e(H ′) =
∑

F∈Ωi,j

d+
H′(F ) = |Ωi,j |8im2

(
1 + Õ

(
∆2

m

))
,

and on the other hand

e(H ′) =
∑

F ′∈Ωi−1,j

d−H′(F
′) = |Ωi−1,j |2mM

(
1 + Õ

(
∆3

M

))
.

Hence, since m,M = Ω(n),

|Ωi−1,j |
|Ωi,j |

=

(
1 + Õ

(
∆3

n

))
4mi

M
.

In order to prove the second half of Lemma 8.5 we will need to introduce a second type of
switch, one that removes double edges, called a d-switch.

For this switch we take eight points x1, . . . , x8 in a configuration F such that

• {x1, x5}, {x2, x6}, {x3, x7}, {x4, x8} ∈ F ;

• φ(x2) = φ(x3) and φ(x6) = φ(x7);

To perform a d-switch we replace F by

F ′ = F \ {{x1, x5}, {x2, x6}, {x3, x7}, {x4, x8}} ∪ {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}.

As before, for most tuples this will reduce the number of double edges in F by one. More
precisely, if we consider the bipartite graph H from Ω to Ω whose arcs are pairs (F, F ′) such
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that F ′ can be obtained from F by performing a d-switch, then we are interested in the subgraph
H ′ of H between Ω0,j and Ω0,j−1.

Again, for any F ∈ Ω0,j there are at most 16jm2 many d-switches that transform F to some
F ′. Indeed, in order to determine a d-switch we have to first choose on of the j many double
edges in F (and choose from one of the 4 possible labellings thereof) and then we have at most
|W |2 many choices for x1 and x4 (which determine x5 and x8 respectively).

On the other hand, for an arbitrary F ′ ∈ Ω there are at most M2 many configurations F
such that some d-switch on F results in F ′. Indeed, the both {x2, x3} and {x6, x7} have to lie
in the same cell, and so there are at most M2 choices for these two pairs, which then determine
the other points.

As with the previous case we will see that these estimates are actually not far from the true
in/out-degrees in H ′.

Lemma 8.7. Let H ′ be a directed bipartite graph on vertex set (Ω0,j ,Ω0,j−1) with an edge from
F to F ′ if there is an d-switch transforming F to F ′. Then, for j ≤ ∆2 log n,

(I) For all F ∈ Ω0,j, d
+
H′(F ) =

(
1 + Õ

(
∆2

m

))
16jm2;

(II) For all F ′ ∈ Ω0,j−1, d−H′(F
′) =

(
1 + Õ

(
∆4

M

))
M2.

Proof. The proof follows very similar lines to Lemma 8.6, we will just outline the key claims,
and leave their proofs as an exercise.

We are interested in when an d-switch applied to F ∈ Ω0,j produces an F ′ ∈ Ω0,j−1. For
such a thing to happen we need that F ′ has no loops, j − 1 paralell edges, and satisfies (a),(c)
and (d) from Lemma 8.4. Note that this will definitely hold as long as

• Neither {x1, x5} or {x4, x8} are a parallel edge in F ;

• None of {x1, x2}, {x3, x4}, {x5, x6} or {x7, x8} are a loop or a parallel edge in F ′.

Exercise : Show that there are at most Õ(j∆2m) many bad tuples.

Similarly, given an F ′ ∈ Ω0.j−1 and a tuple x1, . . . , x8 where φ(x2) = φ(x3), φ(x6) = φ(x7)
and {x1, x2}, {x3, x4}, {x5, x6}, {x7, x8} ∈ F ′ there is a unique F ∈ Ω such that performing a
d-switch to the tuple x1, . . . , x8 in F transforms it to F ′, and we are interested in when F ∈ Ω0,j .
This will definitely hold as long as

• None of {x1, x2}, {x3, x4}, {x5, x6} or {x7, x8} is a parallel edge in F ′;

• Neither {x1, x5} nor {x4, x8} form a loop or a double edge in F ;

• Neither {x2, x6} nor {x3, x7} form a triple edge in F or are incident with another double
edge in F or F ′.
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Exercise : Show that there are at most Õ(∆4M) many bad tuples.

Finally, given Lemma 8.7, the second part of Lemma 8.5 follows as before from double
counting

|Ω0,j−1|M2

(
(1 + Õ(

∆4

M
)

)
) =

∑
F ′∈Ω0,j−1

d−H′(F
′) =

∑
F∈Ω0,j

d+
H′(F ) = |Ω0,j |16jm2

(
1 + Õ(

∆2

m
)

)

and hence, since m,M = Ω(n),

|Ω0,j−1|
|Ω0,j |

=

(
1 + Õ

(
∆4

n

))
16m2j

M2
.

As a simple application of Theorem 8.3 we can estimate the asymptotic number of r-regular
graphs on n vertices.

Theorem 8.8. Let r ≥ 3 then the number of r-regular graphs on n vertices is

|Gn,r| = (1 + o(1))
√

2e−
(r2−1)

4

(
r
r
2

e
r
2 r!

)n
n
rn
2 .

Proof. Since P(γ(F ) is simple) = (1 + o(1))e−λ(λ+1), and |γ−1(G)| = (r!)n,it follows that

|Ω|(1 + o(1))e−λ(λ+1) = (r!)n|Gn,r|.

Note that, since di = r for each i, we have that λ = r−1
2 and hence λ(λ+ 1) = r2−1

4 . However,
we can count the number of configurations on W , as it’s simply the number of perfect matchings
on rn many points. We can calculate this number as

(rn− 1)(rn− 3) . . . (1) =
(rn)!

(rn)(rn− 2)(rn− 4) . . . 2
=

(rn)!

2
rn
2

(
rn
2

)
!

Hence

|Gn,r| = (1 + o(1))e−
(r2−1)

4
(rn)!

2
rn
2

(
rn
2

)
!(r!)n

= (1 + o(1))e−
(r2−1)

4

√
2πrn

(
rn
e

)rn
√
πrn

(
rn
2e

) rn
2 2

rn
2 (r!)n

= (1 + o(1))

(
r
r
2

e
r
2 r!

)n
n
rn
2 .
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8.3 Connectivity of Regular Graphs

Theorem 8.3 allows us to deduce that properties that hold in the multigraph γ(F ) with high
probability, also hold in G(n, d) with high probability (for suitably well behaved d).

Indeed, given some property P of multi-graphs, then whenever P(γ(F ) ∈ P) = o(1) then by
Theorem 8.3

P(G(n, d) ∈ F) = P(γ(F ) ∈ F|γ(F ) is simple) ≤ P(γ(F ) ∈ F)

P(γ(F ) is simple)
=

P(γ(F ) ∈ F)

(1 + o(1))e−λ(λ+1)
= o(1),

as long as the probability P(γ(F ) ∈ F) is sufficiently small as a function of λ. Note, λ =∑
i di(di−1)
2
∑
i di

≤ ∆−1
2 and so, if ∆ is bounded, then every property which holds whp in the config-

uration model holds also whp in G(n, d).

Using this we can talk about properties of G(n, r).

Theorem 8.9. Let r ≥ 3, then with high probability G(n, r) is r-connected.

Proof. We might hope to show that in fact, with high probability γ(F ) is r-connected. However,
there are ways in which γ(F ) can fail to be r-connected which can’t happen in G(n, r), and in
fact this will happen with a non-zero probability. For example, if there is any loop or parallel
edge, then there is a vertex v with |N(v)| < r, and so γ(F ) cannot be r-connected.

However, we still want to work within the configuration model. So, our plan will be to find
structures which witness that a graph is not r-connected, and show that the expected number of
such structures appearing in γ(F ) is o(1), and hence by Markov’s inequality with high probability
there are no such structures. Whilst this doesn’t imply that γ(F ) is r-connected, it does imply
that with high probability G(n, r) contains no such structures, and hence is r-connected.

So, how can a graph G fail to be r-connected? Precisely when there is a set B of size less than
r whose deletion splits the graph into multiple components. By choosing the smallest of these
components, and taking B to be its neighbourhood in the graph, it follows that we can partition
the vertex set V = [n] into three disjoint parts A,B,C such that B = N(A) and |B| < r. In
what follows we will write a := |A|, b := |B| and c := |C|. Furthermore, since A is the smallest
component of G \B, it holds that a < n/2.

We will show, splitting into a number of cases, that whp there are no such triples in γ(F )
with a ≥ 2. This will be sufficient, since G(n, r) deterministically cannot contain such a triple
with a = 1, since |N(v)| = r for all v.

Suppose first that a ∈ {2, 3}. Then, in G(n, r) the set S = A ∪ B, whose size s := |S| is at
most r+ 2, must span at least ar−

(
a
2

)
≥ s+ 1 edges. However, as we will see, it is very unlikely

that a set of size s ≤ r + 2 spans s+ 1 edges in γ(F ).

Indeed, given a fixed set S ⊆ [n] of size s let us estimate the probability that S contains s+1
edges in γ(F ). The s cells {Wi1 , . . . ,Wis} in W corresponding to S contain rs points in total.
Let us call the union of these cells Z. If S spans at least s+ 1 edges in γ(F ), then there must be
some subset T = {t1, . . . , ts+1} ⊆ Z of size s+ 1 such that each point in T is paired to another
point in Z.
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For each choice of T , this probability can be bounded by(
rs− (s+ 1)

rn− 1

)(
rs− (s+ 2)

rn− 3

)
. . .

(
rs− (2s+ 1)

rn− (2s− 1)

)
≤
(

2rs

rn

)s+1

,

for large enough n, using the fact that r, s ∈ N. Hence,

P(There exists S with s ≤ r + 2 vertices containing s+ 1 edges)

≤
r+2∑
s=2

(
n

s

)(
rs

s+ 1

)(
2rs

rn

)s+1

≤
r+2∑
s=2

ns2rs(2s)s+1n−(s+1)

≤ r2rs(2s)s+1 1

n
= o(1).

The second case we will consider is 4 ≤ a ≤ ne−100. In this case we note that there are at
least ra+b

2 many edges incident with the set A in G(n, r). Indeed, each vertex in A is incident
to r edges, and each vertex in B = N(A) is incident to at least one edge which is incident to A.

Given a fixed set A of size 4 ≤ a ≤ ne−100 and a fixed set B of size b ≤ r − 1, by a similar
calculation as before, the probability that there are ra+b

2 edges in γ(F ), with one endpoint in A
and the other endpoint in A ∪B is at most

(
ra
ra+b

2

) ra+b
2∏
i=1

r(a+ b)− i
rn− 2i

≤
(
ra
ra+b

2

)(
2(a+ b)

n

) ra+b
2

Hence,

P(There exists such a pair A,B) ≤
ne−100∑
a=4

r−1∑
b=0

(
n

a

)(
n

b

)(
ra
ra+b

2

)(
2(a+ b)

n

) ra+b
2

≤
ne−100∑
a=4

r−1∑
b=0

n−
ra
2

+a+ b
2
ea+b

aabb
2ra+ ra+b

2 (a+ b)
ra+b

2

≤ Cr
ne−100∑
a=4

n−
ra
2

+a+ r
2
ea

aa
2

3ra
2 (a+ r)

ra+r
2 ,

where Cr is some constant which depends only on r. Now(
a+ r

r

) r
2

=
(

1 +
a

r

) r
2 ≤ e

a
2 ,

and similarly (
a+ r

a

) ra
2

=
(

1 +
r

a

) ra
2 ≤ e

r2

2 .

Hence,

(a+ r)
ra+r

2 ≤ Cra
ra
2 e

a
2 ,
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where again Cr only depends on r (but might be a different constant).

It follows that, with Cr being some constant (perhaps changing line to line)

P(There exists such a pair A,B) ≤ Cr
ne−100∑
a=4

n−
ra
2

+a+ r
2 e

3a
2 2

3ra
2 aa(

r
2
−1)

≤ Cr
ne−100∑
a=4

(
e

3
2 2

3r
2

(n
a

)1− r
2
n
r
2a

)a
.

For small a, say a ≤ log2 n, we note that since r ≥ 3 and a ≥ 4, r
2a <

r
2 − 1 and hence

n1− r
2

+ r
2aa

r
2
−1 = o(1).

On the other hand, for log2 n ≤ a ≤ ne−100, n
r
2a = 1 + o(1) and

(
n
a

)1− r
2 ≤

(
n
a

)− r
8 ≤ e−10r. It

follows that
P(There exists such a pair A,B) = o(1).

The final case we will consider is ne−10 ≤ a ≤ n
2 . Suppose there are exactly s edges between

B and C, where s ≤ br ≤ r2. Let us estimate the probability that this occurs in γ(F ).

Suppose we have chosen the vertex sets A and B, which determines the set C. Let Â, B̂ and
Ĉ be the ra, rb and rc many points in W corresponding to vertices in A,B and C respectively.
Having chosen A and B, we have to choose s points in B̂ which will be paired to points in
Ĉ, pair the remaining r(a + b) − s points in Â ∪ B̂ to each other and then pair the remaining
r(n− a− b) + s points in B̂ ∪ Ĉ together. If we let

ψ(2m) =
(2m)!

m!2m
≈
√

2

(
2m

e

)m
be the number of matchings on 2m points then we see that the probability of getting such a
pairing for the chosen A,B,C and s points in B̂ is at most

ψ(r(a+ b)− s)ψ(r(n− a− b) + s)

ψ(rn)
≈ 2

(r(a+ b)− s)
r(a+b)−s

2 (r(n− a− b) + s)
r(n−a−b)+s

2

(rn)
rn
2

Hence we can estimate the probability that we contain such a triple A,B,C as follows, where
again Cr is some constant (perhaps changing line to line)

∑
a,b,s

(
n

a

)(
n

b

)(
rb

s

)
2

(r(a+ b)− s)
r(a+b)−s

2 (r(n− a− b) + s)
r(n−a−b)+s

2

(rn)
rn
2

≤ Cr
∑
a,b,s

(en
a

)a
nb

(ra)
r(a+b)−s

2 (r(n− a))
r(n−a−b)+s

2

(rn)
rn
2

,

where we used the fact that(
r(a+ b)− s

ra

) r(a+b)−s
2

=

(
1 +

rb− s
ra

) ra
2

+ rb−s
2

= (1 + o(1)) exp

(
−rb− s

2

)
≤ Cr,
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and a similar fact for the term r(n − a − b) + s)
r(n−a−b)+s

2 . Continuining, we can bound the
probability above by

≤ Cr
∑
a,b,s

(en
a

)a
nb
a
r(a+b)−s

2 (n− a)
r(n−a−b)+s

2

(n)
rn
2

≤ Cr
∑
a,b,s

(en
a

)a
nb
(a
n

) ra
2
(

1− a

n

) r(n−a)
2

,

where we used the fact that (
a

n− a

) rb−s
2

≤
(
2e−10

) rb−s
2 ≤ Cr.

Continuing, we can bound the probability above by

≤ Cr
∑
a,b,s

(
en

a
n
b
a

(a
n

) r
2
e−

r
2

(1− a
n

)

)a
≤ Cr

∑
a

(
2e
(a
n

) r
2
−1
e−

r
2

(1− a
n

)

)a
≤ Cr

∑
a

(
2e−5

)a
= o(1),

since a
n ≤ e

−10, r
2 − 1 ≥ 1

2 and r
2

(
1− a

n

)
≥ 1.

As a simple corollary we can conclude that with high probability G(n, r) contains a perfect
matching (if n is even). Indeed, it is a relatively simple consequence of Tutte’s theorem that
every r-regular, r-connected graph on an even number of vertices contains a perfect matching.

Theorem 8.10 (Tutte’s Theorem). G = (V,E) has a perfect matching if and only if for every
subset U ⊆ V , G[V \ U ] has at most |U | many connected components with an odd number of
vertices.

Corollary 8.11. Let r ≥ 3 and n be even, then with high probability G(n, r) contains a perfect
matching.

Proof. By Theorem 8.9 with high probability G := G(n, r) is r-connected. Furthermore, since
vertex-connectivity is always larger than edge-connectivity, it follows that G is also r-edge-
connected.

Suppose then that there is some subset U ⊆ V such that G[V \ U ] has more than |U | many
connected components with an odd number of vertices. Since G is r-connected, it follows that
|U | > r, else G[V \ U ] has exactly one component.

Suppose then that C1, . . . , Cm are the components of G[V \U ], and so m > |U | > r. However,
since G is r-edge-connected, there must be at least r edges between U and Ci for each i. It
follows that at least rm many edges meet U , however, since G is r-regular, at most r|U | edges
meet U , but r|U | < rm, a contradiction.
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So, in contrast to the uniform models, even though G(n, r) is quite sparse, with high proba-
bility it will be connected, and contain a perfect matching. In fact even moreso it can be shown
that it will contain a Hamiltonian cycle.

Indeed, we can calculate at least the expected number of Hamiltonian cycles in G∗(n, r). Let
us be a bit more general, and calculate the expected number of cycles of length k for any k ≤ n.
Each k-cycle in in G∗n,r comes from a set of k pairs in a configuration whose endpoints match
up in the correct way. In a slight abuse of notation we will call such a set of pairs a k-cycle on
W . By symmetry, the probability that any particular k-cycle is included in an configuration is
some fixed pk and so the expected number of k-cycle in a configuration E(Zk) = akpk, where ak
is the number of possible k-cycles on W .

In order to calculate ak we can choose a k-cycle by first choosing an (ordered) sequence of
k cells Wi1 , . . . ,Wik , and in each cell choosing an (ordered) pair (xij , yij ) of points. This gives
rise to a k-cycle given by {(yij , xij+1) : j = 1 . . . k} where xik+1

= x1. This gives rise to a rooted,
oriented cycle, and so each k-cycle is counted precisely 2k many times. It follows that

2kak = (n)k(r(r − 1))k.

For small k we have that pk ≈
(

1
|W |

)k
≈ (rn)−k and hence

E(Zk) ≈
1

2k
(r − 1)k.

In order to calculate E(Zn) we have to approximate pn more precisely. We have that

pn =
1

rn− 1

1

rn− 1
. . . ,

1

rn− 2n+ 1
=
ψ(rn− 2n)

ψ(rn)

where ψ(2m) = (2m)!
m!2m ≈

√
2
(

2m
e

)m
as in the proof of Theorem 8.9. It follows that

pn ≈ enn−n(r − 2)
rn
2
−nr−

rn
2

and so

E(Zn) ≈ 1

2n
n!(r(r − 1))nenn−n(r − 2)

rn
2
−nr−

rn
2

≈ 1

2n

√
2πn

(n
e

)n
(r(r − 1))nn−nen(r − 2)

rn
2
−nr−

rn
2

≈
√

π

2n

(
r1− r

2 (r − 1)(r − 2)
r
2
−1
)n
.

The term in the brackets can be seen to be larger than one if r ≥ 3. Indeed when r = 3 it
can be calculated to be 2√

3
> 1, and the ratio of successive terms can be approximated to be

larger than one.

Hence, E(Zn)→∞ as n→∞ and so we expect G∗n,r to have many Hamiltonian cycles when
r ≥ 3. With some quite careful work the variance of Zn can also be computed, however the ratio

Var(Zn)

E(Zn)2
→ 2

r − 2
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does not tend to 0, so we can’t quite use Chebyshev’s inequality to show that with high proba-
bility there is a Hamiltonian cycle. However, using a more refined version of the second moment
method, allowing them to condition on the non-existence of loops and parallel edges, Robinson
and Womald were able to calculate precisely the limiting distribution of the number of Hamilto-
nian cycles in G(n, r) and hence show that with high probability G(n, r) contains a Hamiltonian
cycle.

Theorem 8.12. Let r ≥ 3 then with high probability G(n, r) contains a Hamiltonian cycle.

8.4 Contiguity

As we’ve seen, with high probability G∗(n, 3) contains a Hamiltonian cycle H, and so in fact
G∗(n, 3) = H ∪M where M is a 1-regular subgraph, that is, a matching. Perhaps a natural
question to ask is, if we choose a Hamiltonian cycle H and a matching M uniformly at random,
then how does the distribution of M ∪H compare to that of G∗(n, 3)?

We note that they cannot be identical in distribution, since M∪H surely contains a matching,
but there is a (vanishingly small, but non-zero) probability that G∗(n, 3) doesn’t. However,
suppose we allow ourselves a slighty broader definition of ‘the same’, and say two distributions
G1 and G2 on (multi)-graphs are contiguous is a property hold with high probability for G1 if
and only if it holds for G2. Will M ∪H and G∗(n, 3) be continguous?

In fact, there is a slightly problem here, in that M ∪ H surely has no loops, but G∗(n, 3)
contains a loop with positive probability. However, for r > 3 this is no longer a problem, and
the expected statement does hold, and when r = 3 this is the only problem.

Theorem 8.13. Let r ≥ 4 then the random multigraph H∪G∗(n, r − 2) where H is a uniformly
chosen Hamiltonian cycle is contiguous with G∗(n, r).

Furthermore if we let G′(n, 3) be (G∗(n, 3)|G∗ has no loops) then H ∪M is contiguous with
G′(n, 3), where M is a uniformly chosen perfect matching.

Using some standard probabilistic tools one can lift these results from multigraphs to simple
graphs as follows, letting ⊕ be the operation of unioning two graphs and then simplifying the
resulting multigraph.

Theorem 8.14. Let r ≥ 3 then the random multigraph H⊕G(n, r − 2) where H is a uniformly
chosen Hamiltonian cycle is contiguous with G(n, r).
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